前言
神经网络的学习步骤如下:
1. mini-batch:
从训练数据中随机选出一部分数据,这部分数据称为mini-batch。我们的目标是减小mini-batch的损失函数值
2. 计算梯度:
为了减小mini-batch的损失函数值,需要求出各个权重参数的梯度。梯度表示损失函数的值减小最多的方向。
3. 更新参数:
将权重参数沿梯度方向进行微小更新
4. 重复123步骤。
一、两层神经网络的类
代码示例:
# coding: utf-8
import sys, os
sys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定
from common.functions import *
from common.gradient import numerical_gradient
class TwoLayerNet:
def __init__(self, input_size, hidden_size, output_size, weight_init_std=0.01):
# 初始化权重
self.params = {}
self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)
self.params['b1'] = np.zeros(hidden_size)
self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size)
self.params['b2'] = np.zeros(output_size)
def predict(self, x):
W1, W2 = self.params['W1'], self.params['W2']
b1, b2 = self.params['b1'], self.params['b2']
a1 = np.dot(x, W1) + b1
z1 = sigmoid(a1)
a2 = np.dot(z1, W2) + b2
y = softmax(a2)
return y
# x:输入数据, t:监督数据
def loss(self, x, t):
y = self.predict(x)
return cross_entropy_error(y, t)
def accuracy(self, x, t):
y = self.predict(x)
y = np.argmax(y, axis=1) #找y矩阵每行的最大值,并输出其所在位置
t = np.argmax(t, axis=1) #找t矩阵每行的最大值,并输出其所在位置
accuracy = np.sum(y == t) / float(x.shape[0])
#np.sum(y == t):先判断y矩阵与t矩阵的每个元素是否相同,相同输出1,不同输出0,然后把结果加起来
#float(x.shape[0]):输出为x矩阵的行数
#accuracy表示平均每行相同的个数,但是为什么用accuracy这个单词还不明白
return accuracy
# x:输入数据, t:监督数据
def numerical_gradient(self, x, t):
#求梯度
loss_W = lambda W: self.loss(x, t)
grads = {}
grads['W1'] = numerical_gradient(loss_W, self.params['W1'])
#损失函数是loss_W, self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)
grads['b1'] = numerical_gradient(loss_W, self.params['b1'])
grads['W2'] = numerical_gradient(loss_W, self.params['W2'])
grads['b2'] = numerical_gradient(loss_W, self.params['b2'])
return grads
def gradient(self, x, t):
#计算权重参数的梯度,是numerical_gradient的高速版,将在后续进一步研究
W1, W2 = self.params['W1'], self.params['W2']
b1, b2 = self.params['b1'], self.params['b2']
grads = {}
batch_num = x.shape[0]
# forward
a1 = np.dot(x, W1) + b1
z1 = sigmoid(a1)
a2 = np.dot(z1, W2) + b2
y = softmax(a2)
# backward
dy = (y - t) / batch_num
grads['W2'] = np.dot(z1.T, dy)
grads['b2'] = np.sum(dy, axis=0)
da1 = np.dot(dy, W2.T)
dz1 = sigmoid_grad(a1) * da1
grads['W1'] = np.dot(x.T, dz1)
grads['b1'] = np.sum(dz1, axis=0)
return grads
解析:
(1)numpy.random.randn(d0,d1,…,dn)
-
randn函数返回一个或一组样本,具有标准正态分布。
-
dn表示每个维度
-
返回值为指定维度的array
import numpy as np
a = np.random.randn(2,4)
print(a)
[[-1.6603249 0.98062458 1.54753599 -1.43962466]
[ 0.98204966 0.38925058 -0.02572875 -1.36475084]]
(2)numpy.zeros(shape,dtype = float,order ='C')
返回具有输入形状和类型的零数组。(生成相应大小的零矩阵)
import numpy as np
a = np.zeros(5)
print(a)
[0. 0. 0. 0. 0.]
(3)numpy.argmax(array, axis)
用于返回一个numpy数组中最大值的索引值。
多维数组np.argmax(a, axis=1)
在列方向比较,此时就是指在每个矩阵内部的列方向上进行比较
a = np.array([
[
[1, 5, 5, 2],
[9, -6, 2, 8],
[-3, 7, -9, 1]
],
[
[-1, 7, -5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]
],
[
[21, 6, -5, 2],
[9, 36, 2, 8],
[3, 7, 79, 1]
]
])
c=np.argmax(a, axis=1)#对于三维度矩阵,a有三个方向a[0][1][2]
#当axis=1时,是在a[1]方向上找最大值,即在列方向比较,此时就是指在每个矩阵内部的列方向上进行比较
#(1)看第一个矩阵
# [1, 5, 5, 2],
# [9, -6, 2, 8],
# [-3, 7, -9, 1]
#比较每一列的最大值,可以看出第一列1,9,-3最大值为9,,索引值为1
#第2列5,-6,7最大值为7,,索引值为2
# 因此对第一个矩阵,找出索引结果为[1,2,0,1]
#再拿出2个,按照上述方法,得出比较结果 [1 0 2 1]
#一共有三个,所以最终得到的结果b就为3行4列矩阵
print(c)
#[[1 2 0 1]
# [1 0 2 1]
(4)loss_W = lambda W: self.loss(x, t)
利用lambda匿名函数定义了一个函数f,匿名函数转正,有名字了,函数形参为x,函数体是冒号后面的部分。注意这里只是定义了函数f,没有进行调用。
f = lambda x:my_test(x) # 代码1
等价于
def f(x):
return my_test(x)
输出分析:
net = TwoLayerNet(input_size=784, hidden_size=100, output_size=10)
a = net.params['W1'].shape
b = net.params['b1'].shape
c = net.params['W2'].shape
d = net.params['b1'].shape
print(a)
print(b)
print(c)
print(d)
输出:
(784, 100)
(100,)
(100, 10)
(100,)
二、mini-batch的实现
# coding: utf-8
import sys, os
sys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定
import numpy as np
import matplotlib.pyplot as plt
from dataset.mnist import load_mnist
from two_layer_net import TwoLayerNet
# 读入数据
(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, one_hot_label=True)
network = TwoLayerNet(input_size=784, hidden_size=50, output_size=10)
iters_num = 10000 # 适当设定循环的次数
train_size = x_train.shape[0]
batch_size = 100
learning_rate = 0.1
train_loss_list = []
train_acc_list = []
test_acc_list = []
iter_per_epoch = max(train_size / batch_size, 1)
for i in range(iters_num):
batch_mask = np.random.choice(train_size, batch_size)
x_batch = x_train[batch_mask]
t_batch = t_train[batch_mask]
# 计算梯度
#grad = network.numerical_gradient(x_batch, t_batch)
grad = network.gradient(x_batch, t_batch)
# 更新参数
for key in ('W1', 'b1', 'W2', 'b2'):
network.params[key] -= learning_rate * grad[key]
loss = network.loss(x_batch, t_batch)
train_loss_list.append(loss)
if i % iter_per_epoch == 0:
train_acc = network.accuracy(x_train, t_train)
test_acc = network.accuracy(x_test, t_test)
train_acc_list.append(train_acc)
test_acc_list.append(test_acc)
print("train acc, test acc | " + str(train_acc) + ", " + str(test_acc))
# 绘制图形
markers = {'train': 'o', 'test': 's'}
x = np.arange(len(train_acc_list))
plt.plot(x, train_acc_list, label='train acc')
plt.plot(x, test_acc_list, label='test acc', linestyle='--')
plt.xlabel("epochs")
plt.ylabel("accuracy")
plt.ylim(0, 1.0)
plt.legend(loc='lower right')
plt.show()
图中实线表示训练数据的识别精度,虚线表示测试数据的识别精度。随着epoch(学习的进行),训练数据和测试数据评价的识别精度都提高了,并且两个线基本冲别再一起。因此可以说,此次学习过程没有发生过拟合现象。
总结