- 博客(51)
- 问答 (4)
- 收藏
- 关注
原创 IndexError: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boo
报错IndexError: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices解决
2023-01-04 11:14:50 21523 3
原创 【知识点】数据可视化——条形图与折线图的组合图
写论文时,需要将条形图与折线图画在一起,有时候他们共用同一个纵坐标、有时是分开的。这两种情况分别如何处理?
2022-11-21 19:36:20 3219
原创 【bug解决】AttributeError: module ‘tensorflow‘ has no attribute ‘truncated_normal‘
AttributeError: module 'tensorflow' has no attribute 'truncated_normal'
2022-11-07 21:22:27 5876
原创 【自学】利用python进行数据分析 LESSON7 <pandas入门——pandas基本功能>
主要介绍了Series和DataFrame的构建、索引、切片、修改、删除。使用iloc、loc、reindex等方法。
2022-10-11 12:05:23 471
原创 【机器学习】模型的可解释性浅谈
。随着机器学习技术的不断进步,未来有望产生一个能够感知、学习、做出决策和采取独立行动自主系统。但是,如果这些系统无法向人类解释为何作出这样的决策,那么它们的有效性将会受到限制。用户要理解,信任和管理这些人工智能“合作伙伴”,可解释AI则至关重要。
2022-10-10 21:33:57 1063
原创 【自学】利用python进行数据分析 LESSON5 <pandas入门——pandas数据结构介绍1>
主要学习了pandas的数据结构,包括 Series 和 DataFrame
2022-09-24 17:49:29 284
原创 【自学】利用python进行数据分析 LESSON4 <Numpy基础——随机数生成>
本节主要介绍使用数组进行文件输入和输出、线性代数和伪随机数生成。
2022-09-23 23:00:40 724
原创 【自学】利用python进行数据分析 LESSON 3 <Numpy基础——使用数组进行面向数组编程>
主要讲解通用函数以及使用数组进行面向数组编程
2022-09-22 17:31:45 449
原创 【知识点】np.where()用法
传递给np.where 的参数既可以是同等大小的数组,也可以是标量。当不传递参数,只传递条件时,输出的是满足条件的坐标。
2022-09-22 16:49:15 41234 2
原创 【自学】利用python进行数据分析 LESSON 2 <Numpy基础——Numpy ndarray:多维数组对象2>
利用python进行数据分析 LESSON 2 <Numpy基础——Numpy ndarray:多维数组对象2>。主要介绍布尔索引和神奇索引两部分,内容不难。
2022-09-19 17:58:18 207
原创 【知识点】eval() 的用法
eval () 作用 只去掉最外层引号eval()的参数形式为字符串或字符串变量,在程序中可以将字符串形式的输入值转化为数字进行计算。
2022-09-18 15:33:14 19995
原创 【自学】利用python进行数据分析 LESSON1 <Numpy基础——Numpy ndarray:多维数组对象1>
Numpy的核心特征之一就是N-维数组对象。目前来看这本书比较简单,这个系列希望可以在文章中多一些例子和练习,以便更容易理解、印象更加深刻。
2022-09-17 22:09:23 251
原创 【自学】深度学习入门 基于python的理论与实现 LESSON11 <与学习相关的技巧2 权重的初始值与Batch Normalization>
深度学习入门 基于python的理论与实现 LESSON11 <与学习相关的技巧2 权重的初始值与Batch Normalization>
2022-09-16 18:57:54 432
原创 【自学】深度学习入门 基于python的理论与实现 LESSON10 <与学习相关的技巧1——权重参数优化方法>
深度学习入门 基于python的理论与实现 LESSON10 <与学习相关的技巧1——权重参数优化方法>
2022-09-08 16:14:24 799
原创 【自学】深度学习入门 基于python的理论与实现 LESSON9 <误差反向传播法3>
【自学】深度学习入门 基于python的理论与实现 LESSON9 <误差反向传播法3> softmax层的反向传播的实现
2022-09-06 17:06:57 465
原创 【自学】深度学习入门 基于python的理论与实现 LESSON8 <误差反向传播法2>
【自学】深度学习入门 基于python的理论与实现 LESSON8 <误差反向传播法2> 今天学习反向传播再激活层、Affine层的实现。
2022-09-06 12:02:11 472
原创 【bug解决】TypeError: forward() missing 1 required positional argument: ‘x‘
【bug解决】TypeError: forward() missing 1 required positional argument: 'x' 。类的实例化
2022-09-04 22:33:17 14776 1
原创 【自学】深度学习入门 基于python的理论与实现 LESSON7 <误差反向传播法1>
前面使用数值微分的方法进行梯度计算,该方法简单易实现,但是计算花费时间多。本章将学习高效计算权重参数梯度的方法——误差反向传播法。
2022-08-31 16:48:35 353 1
原创 【自学】深度学习入门 基于python的理论与实现 LESSON6 <神经网络的学习3>
【自学】深度学习入门 基于python的理论与实现 LESSON6 <神经网络的学习3>
2022-08-30 16:49:02 442
原创 【自学】深度学习入门 基于python的理论与实现 LESSON5 <神经网络的学习2>
【自学】深度学习入门 基于python的理论与实现 LESSON5 <神经网络的学习2> 本节先研究清楚怎么求导、求偏导,然后再学习数值微分、梯度以及学习算法的实现。
2022-08-27 17:29:40 393
原创 【自学】深度学习入门 基于python的理论与实现 LESSON4 <神经网络的学习1>
【自学】深度学习入门 基于python的理论与实现 LESSON4 <神经网络的学习1> 学习的目的就是以损失函数为基准,找出能使它的值达到最小的权重参数。为了找出尽可能小的损失函数的值,本节我们利用函数斜率的梯度法。...
2022-08-25 17:52:05 467
原创 【自学】深度学习入门 基于python的理论与实现 LESSON 2 <神经网络2>
【自学】深度学习入门 基于python的理论与实现 LESSON 2 <神经网络2>
2022-08-23 19:35:14 612 1
原创 【bug解决】AxisError: axis 1 is out of bounds for array of dimension 1
【bug解决】AxisError: axis 1 is out of bounds for array of dimension 1
2022-08-23 16:40:44 17029
人因工程熵值法求权重正反向化的分析配套数据
2022-10-17
TA创建的收藏夹 TA关注的收藏夹
TA关注的人