利用数据挖掘破解汽车盗窃案:探索犯罪数据库的价值
1. 引言
数据挖掘作为近年来新兴的技术,能够帮助我们分析历史数据,挖掘其中的有用知识。在商业领域,数据挖掘已经得到了广泛应用,企业通过分析日常运营积累的数据,获取有助于决策的隐含信息。然而,许多政府部门虽然掌握着大量关键数据,但尚未充分认识到数据挖掘的价值,台湾的执法机构就是如此。执法机构积累了大量犯罪案件数据,但大多仅用于数据库查询,缺乏更高级的处理和应用。
本研究是台湾将数据挖掘应用于执法领域的早期尝试之一。汽车盗窃是台湾最常见的犯罪类型,犯罪调查人员发现,汽车盗窃案往往有固定的作案模式,犯罪分子常结成团伙作案。这表明我们可以开发数据挖掘工具,识别汽车盗窃的行为模式,帮助执法机构提前预防犯罪。本研究使用了1991年1月至2001年12月期间的37.8万条汽车盗窃记录。
2. 文献综述
2.1 汽车盗窃相关研究
汽车盗窃在台湾是一个严重的犯罪问题。2004年,约有21.7万辆汽车被盗,占总盗窃案件的65%,由于部分受害者未报案,实际被盗数量可能更多。
历史上,犯罪空间分布的主要理论是社会失序理论。该理论认为,贫困、种族和民族异质性以及居民流动性等外部因素会导致社区社会控制活动减少,犯罪活动增加,包括汽车盗窃。但该理论似乎无法解释台湾的汽车盗窃现象,因为台湾的汽车盗窃多是为了获利,而社会失序理论认为汽车盗窃主要由社会优势群体出于娱乐目的实施。
常规活动理论则认为,犯罪发生需要有吸引人的目标(机会)、有动机的犯罪者以及缺乏有效监护。该理论假设犯罪是一种理性选择,犯罪者会试图最大化收益并最小化损失。在台湾的汽车盗窃案中,常规活动理论在大多数情况下
数据挖掘助力破解汽车盗窃案
订阅专栏 解锁全文
26

被折叠的 条评论
为什么被折叠?



