研究亥姆霍兹线圈轴线磁场分布

【实验目的】

1.测量圆线圈轴线上的磁感应强度;

2.测量亥姆霍兹线圈轴线上的磁场分布;

3.了解亥姆霍兹线圈磁场的特点以及磁场叠加原理;

4.学习使用霍尔效应法测量磁场。

【实验原理】

磁场起源于电荷的运动,通常用磁感应强度B(包括方向和大小)表述磁场性质,其大小与介质性质有关,而且是空间位置的函数。

1.通电圆线圈轴线上的磁场分布

设一圆线圈如图1-1所示,通有电流I,线圈半径为R。圆线圈轴线上任意一点P的磁感应强度B(x)方向垂直于线圈平面,并按右手法则沿轴正向,根据毕奥-萨伐尔定律(适用于直导线)

                                                              B=\frac{\mu _{0}}{4\pi }\frac{Idlcos\alpha }{r^{2}}

在上式中B为在线圈轴线上距离线圈中点x处一点

I为线圈所通电流量

\mu_{0}为真空磁导率,本题中取\mu_{0}=4\pi *10^{-7}H/m

\alphaIdl与电流元的夹角

对于图1-1通电轴线圈:

                                

                                 B=\int dBcos\theta =\frac{\mu {_{0}}^{} I}{4\pi }\int \frac{dl}{r^{2}}cos\theta =\frac{\mu {_{0}}^{} IR}{2x^{2} }sin^{2}\theta cos\theta                 ①

其中

                                                          sin\theta =\frac{x}{\sqrt{x^{2}+{R_{}^{2}}}}                                                    ②

                                                          cos\theta =\frac{R}{\sqrt{x^{2}+{R_{}^{2}}}}                                                    ③ 

 将②③代入①得: 

                                            B=\frac{\mu {_{0}}^{} IR}{x^{2} }sin^{2}\theta cos\theta=\frac{\mu {_{0}}^{} IR^{2}}{2(x^{2}+R^{2})^{\frac{3}{2}}}

同时对于轴线圈中点B'有:

                                                                 ^{}B'=\frac{\mu_{0}I}{2R}

由此可得:

                                                          \frac{B}{B'}=[1+(\frac{x}{R})^2]^{-\frac{3}{2}}

                                                        B=B'[1+(\frac{x}{R})^{2}]^{-\frac{3}{2}}

由此可得:B(x)随x增大而减小,在线圈平面两侧成对称分布

2.亥姆霍兹线圈的磁场分布

亥姆霍兹线圈由两个圆线圈组成,其半径均为R,匝数均为N,电流大小以及方向均相同。

如图1-2,两圆线圈平面彼此平行且共轴,两者中心距离O,0等于它们的半径R;将两线圈串联,通以同方向电流1若取两线圈中心连线的中点0为坐标原点,则两线圈的中心OA及OB点分别对应于坐标值R/2及一R/2。

线圈中的电流方向相同,因此两线圈在轴线上任一点P所产生的磁场同向。两线圈在P点(与中点0的距离为x)产生的磁感应强度分别为B_{A}=\frac{\mu_{0}IR^{2}N}{2[R^{2}+(\frac{R}{2}+x)^{2}]^{\frac{3}{2}}}

B_{B}=\frac{\mu_{0}IR^{2}N}{2[R^{2}+(\frac{R}{2}+x)^{2}]^{\frac{3}{2}}}

故P点的合磁场B(x)为

B(x)=B_{A}+B{B}

其中在x=0处为

B_{0}=\frac{\mu_{0}NI}{R}(\frac{8}{5^{\frac{3}{2}}})

当两线圈间距0,0变化时,轴线上的磁场分布也随之改变。轴线上的磁场分布与两线圈间距OAOB的关系如图所示:

由图可见,当两线圈间距OAOB较大(大于线圈半径R)时,两线圈中心点附近磁场较弱,如图所示;当两线圈间距OAOB较小(小于线圈半径R)时,两线圈中心点附近磁场较强,如图所示,当两线圈间距OAOB等于线圈半径R时,组成亥姆霍兹线圈,两线圈中心点O附近磁场最均匀,如图所示、上述曲线与用式进行定性分析的结果是一致的。

计算表明,当1x1<R/10时,B(z)和B(0)间相对差别约1/10000,因此亥姆霍兹线圈能产生比较均匀的磁场。在生产和科研中,常用这种方法来产生大空间、均匀的低磁场。

【实验内容】

图亥姆花兹线实验装置示意图

1.参看仪器说明书熟悉仪器使用

2.测量圆线圈中心的磁感应强度

(1)测量圆线圈中心的磁感应强度并与计算值相比较

(2)将探头放置在线圈轴线上某一点,转动探头方向观察毫特斯拉计示值变化,数值最大时为传感器的法线方向,也就是这点的磁感应强度的方向。

(3)测量圆线圈轴线上的磁感应强度分布,并与理论曲线相比较。

3.测量亥姆霍兹线圈中心的磁感应强度

(1)测量亥姆霍兹线圈中心的磁感应强度,并与计算值相比较。

(2)测量亥姆霍兹线圈轴线上的磁感应强度分布。

(3)改变二圆线圈之间的距离OAO,研究线圈轴线上的磁感应强度分布。

4.注意事项

(1)开机后应预热10 min以上,待系统稳定后再开始作实验

(2)为了抵消地磁场的影响以及对其他不稳定因素的补偿,在改变位置测量某一点磁感应强度之前,应断开线圈电流,在电流为零时调零;然后接通线圈电流,进行测量和读数。

【参考文献】

沈元华等,基础物理实验,上海:复旦大学出版社,2003

在电子设计自动化(EDA)领域,Verilog HDL 是一种重要的硬件描述语言,广泛应用于数字系统的设计,尤其是在嵌入式系统、FPGA 设计以及数字电路教学中。本文将探讨如何利用 Verilog HDL 实现一个 16×16 点阵字符显示功能。16×16 点阵显示器由 16 行和 16 列的像素组成,共需 256 个二进制位来控制每个像素的亮灭,常用于简单字符或图形显示。 要实现这一功能,首先需要掌握基本的逻辑门(如与门、或门、非门、与非门、或非门等)和组合逻辑电路,以及寄存器和计数器等时序逻辑电路。设计的核心是构建一个模块,该模块接收字符输入(如 ASCII 码),将其转换为 16×16 的二进制位流,进而驱动点阵的 LED 灯。具体而言,该模块包含以下部分:一是输入接口,通常为 8 位的 ASCII 码输入,用于指定要显示的字符;二是内部存储,用于存储字符对应的 16×16 点阵数据,可采用寄存器或分布式 RAM 实现;三是行列驱动逻辑,将点阵数据转换为驱动 LED 矩阵的信号,包含 16 个行输出线和 16 个列使能信号,按特定顺序选通点亮对应 LED;四是时序控制,通过计数器逐行扫描,按顺序控制每行点亮;五是复用逻辑(可选),若点阵支持多颜色或亮度等级,则需额外逻辑控制像素状态。 设计过程中,需用 Verilog 代码描述上述逻辑,并借助仿真工具验证功能,确保能正确将输入字符转换为点阵显示。之后将设计综合到目标 FPGA 架构,通过配置 FPGA 实现硬件功能。实际项目中,“led_lattice”文件可能包含 Verilog 源代码、测试平台文件、配置文件及仿真结果。其中,测试平台用于模拟输入、检查输出,验证设计正确性。掌握 Verilog HDL 实现 16×16 点阵字符显示,涉及硬件描述语言基础、数字逻辑设计、字符编码和 FPGA 编程等多方面知识,是学习
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值