searbon使用(绘图函数)

本文介绍Seaborn库中用于数据集分布可视化的方法,包括distplot()、kdeplot()和regplot()。distplot()用于绘制单变量分布,支持直方图和核密度估计;kdeplot()用于绘制核密度估计,可处理单变量和双变量数据;regplot()则用于绘制散点分布并进行线性回归模型拟合。
摘要由CSDN通过智能技术生成

数据集分布的可视化
分类数据的绘图
线性关系可视化


一.数据集分布的可视化

  1. distplot
  2. kdeplot
  3. rugplot

1.distplot()

灵活的绘制单变量的分布,传入一组一维数据
默认kde为True,纵坐标为在横坐标区域内分布的概率,曲线表示概率密度函数,在区间上积分值为1
设置kde为False,纵坐标表示落在横坐标bins中的数值的数量

seaborn.distplot(a, bins=None, hist=True, kde=True, rug=False, fit=None, hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None, color=None, vertical=False, norm_hist=False, axlabel=None, label=None, ax=None)

Parameters:

  • a:传入的一维数据
  • bins:控制直方图的竖直的长方形的数量
  • hist:是否绘制直方图
  • kde:是否绘制高斯和密度估计曲线
  • rug:是否在坐标轴上绘制rug
  • fit:An object with fit method, returning a tuple that can be passed to a pdf method a positional arguments following an grid of values to evaluate the pdf on.
  • color:设置颜色
  • vertical:设置为true,观察值在y轴
  • norm_hist:设置为true,直方图显示的是密度而不是count数
  • axlabel:Name for the support axis label
  • label:Legend label for the relevent component of the plot
  • ax:if provided, plot on this axis
    returns:
  • ax: matplotlib Axes.Returns the Axes object with the plot for further tweaking

2.kdeplot()

拟合或者绘画单元变量或者是双元变量的核密度估计

seaborn.kdeplot(data, data2=None, shade=False, vertical=False, kernel=’gau’, bw=’scott’, gridsize=100, cut=3, clip=None, legend=True, cumulative=False, shade_lowest=True, cbar=False, cbar_ax=None, cbar_kw

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值