数据集分布的可视化
分类数据的绘图
线性关系可视化
一.数据集分布的可视化
distplot
kdeplot
rugplot
1.distplot()
灵活的绘制单变量的分布,传入一组一维数据
默认kde为True,纵坐标为在横坐标区域内分布的概率,曲线表示概率密度函数,在区间上积分值为1
设置kde为False,纵坐标表示落在横坐标bins中的数值的数量
seaborn.distplot(a, bins=None, hist=True, kde=True, rug=False, fit=None, hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None, color=None, vertical=False, norm_hist=False, axlabel=None, label=None, ax=None)
Parameters:
- a:传入的一维数据
- bins:控制直方图的竖直的长方形的数量
- hist:是否绘制直方图
- kde:是否绘制高斯和密度估计曲线
- rug:是否在坐标轴上绘制rug
- fit:An object with fit method, returning a tuple that can be passed to a pdf method a positional arguments following an grid of values to evaluate the pdf on.
- color:设置颜色
- vertical:设置为true,观察值在y轴
- norm_hist:设置为true,直方图显示的是密度而不是count数
- axlabel:Name for the support axis label
- label:Legend label for the relevent component of the plot
- ax:if provided, plot on this axis
returns:
- ax: matplotlib Axes.Returns the Axes object with the plot for further tweaking
2.kdeplot()
拟合或者绘画单元变量或者是双元变量的核密度估计
seaborn.kdeplot(data, data2=None, shade=False, vertical=False, kernel=’gau’, bw=’scott’, gridsize=100, cut=3, clip=None, legend=True, cumulative=False, shade_lowest=True, cbar=False, cbar_ax=None, cbar_kw