机器学习问题中过拟合出现的原因及解决方案

如果一味的追求模型的预测能力,所选的模型复杂度就会过高,这种现象称为过拟合。模型表现出来的就是训练模型时误差很小,但在测试的时候误差很大。

一、产生的原因:

1.样本数据问题

样本数据太少
样本抽样不符合业务场景
样本中的噪音数据影响

2.模型问题

模型复杂度高,参数太多
决策树模型没有剪纸
模型训练过程中权重迭代次数太多,拟合了数据中的噪声数据

二、解决方案

1.样本数据方面

增加样本数量
对样本数据进行降维
添加验证数据
抽样方法要符合业务场景
清洗噪声数据

2.模型方面

控制模型复杂度,优先选择复杂度简单的模型,或者融合模型
利用先验知识添加L1,L2正则项
进行交叉验证
不要过度训练,最优化求解,收敛之前停止迭代
如果是决策树模型进行减值
权重衰减

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值