csp-202209-2何以包邮?——背包问题

15 篇文章 0 订阅

        根据题意原问题属于01背包问题,但是标准的01背包求的是最大价值,而此题是一个最小值问题,min(ans)>x       max(ans')<∑Vi -x (ans'=∑vi-ans) 这样转化成一个最大值的问题,还有一个问题就是该题没有直接出现w [ i ] ,令w的意义为 v 此时问题与01背包问题完全等价。

(注:01背包问题状态转移方程是f [ j ] = max ( f [ j ],f [ j -v[ i ] ] + w [ i ] )

#include<bits/stdc++.h>
using namespace std;
int n,x;
const int N = 3e5 + 10;
int v[33],sum,f[N]; 
int main()
{
	cin>>n>>x;
	for (int i = 1;i <= n;i++)
	{
		cin >> v[i];
		sum +=v[i];
	}
	int m = sum - x;//这是该问题中背包的容量
	for (int i = 1;i <= n;i++)
		for (int j = m;j >= v[i];j--)
			f[j] = max(f[j], f[j - v[i]] + v[i]);
	
	cout <<sum-f[m];
	//system("pause");
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值