对象分割技术在图像重绘上的运用

本文介绍了MetaAI的SegmentAnythingModel(SAM)如何与GroundingDINO和StableDiffusion结合,创建一个能接受文本输入的pipeline,实现图像的inpainting和outpainting。文章展示了SAM在对象识别和图像编辑中的应用潜力,以及如何通过编程操作这些模型进行复杂的图像处理。
摘要由CSDN通过智能技术生成

今年早些时候,Meta AI 发布了他们的新开源项目: Segment Anything Model(SAM) ,在计算机视觉社区引起了巨大的轰动。SAM 是一种快速分割系统,它擅长于对不熟悉的物体和图像进行零样本泛化,而不需要额外的训练。

在本教程中,我将演示如何结合使用 SAM 和 GroundingDINO 以及Stable Diffusion 来创建一个接受文本作为输入的pipeline,以便使用生成式 AI 执行图像inpainting和outpainting。

在演示之前,总体了解下我们的pipeline:

系统先使用Grounding DINO 根据输入的文本进行对象检测,然后将对象检测结果作为输入 传递给 Segment Everything 得到图像掩码(Mask),这些掩码结合文本prompts 作为Stable Diffusion的输入,由SD来进行图像的重绘。

为了让大家对上述流程更清楚的理解,先介绍下 SAM,从官方宣传片得知,它擅长识别图片中的多对象,包括背景:

https://huggingface.co/spaces/segments/panoptic-segment-anything

Huggingface 有个空间,可以来尝试SAM:

比如针对下面左边图,输入对象类别:car,bus,person

右边图就能够识别每种类型的对象,并用不同的颜色标记出来。

比如你只想看识别出来的car:

这里只看识别出来的person:

还有人眼都看不清的 bus:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值