C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
Sample Input
1 10 1 2 3 4 5 6 7 8 9 10 Query 1 3 Add 3 6 Query 2 7 Sub 10 2 Add 6 3 Query 3 10 End
Sample Output
Case 1: 6 33 59
#include <stdio.h>
#include <math.h>
const int MAX = 50010 * 4;
int segment[MAX];//存放线段树,因为类似完全二叉树, 所以可以用数组来表示
//更新root节点的值,即兵营里的人数
void pushUp(int root)
{
segment[root] = segment[root * 2] + segment[root * 2 + 1];
}
//建树,只需要两个点,一个起点,一个终点
void buildTree(int root, int left, int right)
{
if(left == right)
{
//输入兵营里的人数
scanf("%d", &segment[root]);
return;
}
int mid = (left + right) / 2;
buildTree(root * 2, left, mid);
buildTree(root * 2 + 1, mid + 1, right);
//调整它的上面节点的值
pushUp(root);
}
/*更新最下面节点的值,而且要更新以上给他有关联的节点的值, root代表根节点,
pos代表更新的位置, add_num 代表增加的值,如果是负数,说明是减少的,left和right
分别为当前节点区间的左右端点*/
void update(int root, int pos, int add_num, int left, int right)
{
if (left == right)
{
segment[root] += add_num;
return;
}
int mid = (left + right) / 2;
if (pos <= mid)
update(root * 2, pos, add_num, left, mid);
else
update(root * 2 + 1, pos, add_num, mid + 1, right);
//向上调整
pushUp(root);
}
//获取指定区间内的总数
int getSum(int root, int left, int right, int L, int R)
{
if(left == L && right == R)
{
return segment[root];
}
int mid = (L + R) / 2;
int res = 0;
//如果在当前节点的右半个区间内
if(left > mid)
{
res += getSum(root * 2 + 1, left, right, mid + 1, R);
}
//如果在当前节点的左半个区间内
else if(right <= mid)
{
res += getSum(root * 2, left, right, L, mid);
}
//一个在左边,一个在右边
else
{
res += getSum(root * 2, left, mid, L, mid);
res += getSum(root * 2 + 1, mid + 1, right, mid + 1, R);
}
return res;
}
int main()
{
int T;
scanf("%d", &T);
for(int kase = 1; kase <= T; kase++)
{
int n;
scanf("%d", &n);
buildTree(1, 1, n);//建树,同时输入节点的值,也就是兵营的人数
char op[10];
int t1, t2;
printf("Case %d:\n", kase);
while(scanf("%s", op))
{
if(op[0] == 'E')
break;
scanf("%d %d", &t1, &t2);
if(op[0] == 'A')
{
update(1, t1, t2, 1, n);
}
else if(op[0] == 'S')
{
update(1, t1, -t2, 1, n);
}
else
{
printf("%d\n", getSum(1, t1, t2, 1, n));
}
}
}
return 0;
}
[点击并拖拽以移动]
很多学校流行一种比较的习惯。老师们很喜欢询问,从某某到某某当中,分数最高的是多少。
这让很多学生很反感。
不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的询问。当然,老师有时候需要更新某位同学的成绩。
Input
本题目包含多组测试,请处理到文件结束。
在每个测试的第一行,有两个正整数 N 和 M ( 0<N<=200000,0<M<5000 ),分别代表学生的数目和操作的数目。
学生ID编号分别从1编到N。
第二行包含N个整数,代表这N个学生的初始成绩,其中第i个数代表ID为i的学生的成绩。
接下来有M行。每一行有一个字符 C (只取'Q'或'U') ,和两个正整数A,B。
当C为'Q'的时候,表示这是一条询问操作,它询问ID从A到B(包括A,B)的学生当中,成绩最高的是多少。
当C为'U'的时候,表示这是一条更新操作,要求把ID为A的学生的成绩更改为B。
Output
对于每一次询问操作,在一行里面输出最高成绩。
Sample Input
5 6 1 2 3 4 5 Q 1 5 U 3 6 Q 3 4 Q 4 5 U 2 9 Q 1 5
Sample Output
5 6 5 9
Hint
Huge input,the C function scanf() will work better than cin
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<set>
#include<map>
#include<algorithm>
#include<queue>
#include<stack>
typedef long long LL;
using namespace std;
const int MAXX=2e5+10;
#define lson l,m,i<<1
#define rson m+1,r,i<<1|1
struct NODE
{
int l,r,v; //区间 值
int mid() // c++ 中的函数 node[1].mid();返回值
{
return (l+r) / 2.0; // 整除
}
};
NODE node[MAXX<<2];
int maxx=0;
#define length node[i].r-node[i].l+2
void push_up(int i) // 求当前下标 i 的最大值(最大值由左右孩子比较得到的)
{
node[i].v=max(node[i<<1].v,node[i<<1|1].v);
}
void Build(int l,int r,int i)// 建树并初始化
{
node[i].l=l;
node[i].r=r;
node[i].v=0;
if(l==r) // 出口 找到叶子节点输入最后一行的信息
{
scanf("%d",&node[i].v);
return ;
}
int m=node[i].mid();
Build(lson);
Build(rson);
push_up(i);
}
void query(int l,int r,int i)
{
if(node[i].l==l&&node[i].r==r) // 找到了你要找的目标区间,求出来该区间的最大值
{
maxx=max(maxx,node[i].v); // 比较的原因:如果是分离式的,要比较两部分求出一个最大值
return ;
}
int m=node[i].mid();
if(r<=m)
query(l,r,i<<1);
else
{
if(l>m)
query(l,r,i<<1|1);
else
{
query(lson);
query(rson);
}
}
}
void update(int l,int r,int i,int number,int va) //单点更新,只更新目标区间的一个点
{
if(l==r&&l==number) //单点更新更新的是叶子节点,所以判断条件是 l 是否等于 r,并且找到该序号
{
node[i].v=va;
return ;
}
int m=node[i].mid();
if(m>=number)
update(l,m,i<<1,number,va);
else
update(m+1,r,i<<1|1,number,va);
push_up(i);// 更新完叶子节点之后 去更新它上边包含他的区间的最大值
}
int main()
{
// ios::sync_with_stdio(false);
int n,m;
char s[3];
int x,y;
while( scanf("%d %d",&n,&m)!=EOF)
{
Build(1,n,1);
while(m--)
{
scanf("%s %d %d",s,&x,&y);
maxx=0;
if(s[0]=='Q')
{
query(x,y,1); // 查询的时候开始的区间是 1-n,所以一开始下标是 1,目标区间是 x-y
printf("%d\n",maxx);
}
if(s[0]=='U')
update(1,n,1,x,y); // 更新的话需要把 1-n 都给更新,所以一开始的区间是 1-n
}
}
}
N个气球排成一排,从左到右依次编号为1,2,3....N.每次给定2个整数a b(a <= b),lele便为骑上他的“小飞鸽"牌电动车从气球a开始到气球b依次给每个气球涂一次颜色。但是N次以后lele已经忘记了第I个气球已经涂过几次颜色了,你能帮他算出每个气球被涂过几次颜色吗?
Input
每个测试实例第一行为一个整数N,(N <= 100000).接下来的N行,每行包括2个整数a b(1 <= a <= b <= N)。
当N = 0,输入结束。
Output
每个测试实例输出一行,包括N个整数,第I个数代表第I个气球总共被涂色的次数。
Sample Input
3 1 1 2 2 3 3 3 1 1 1 2 1 3 0
Sample Output
1 1 1 3 2 1
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#define maxx 1e5+10
#include<algorithm>
using namespace std;
int c[100010],t;
int lowbit(int x)
{
x=x&-x;
return x;
}
void update(int n,int v)
{
while(n<=maxx)
{
c[n]+=v;
n+=lowbit(n);
}
}
int getsum(int n)
{
int ans=0;
while(n>0)
{
ans+=c[n];
n-=lowbit(n);
}
return ans;
}
int main()
{
int a,b,i;
while(~scanf("%d",&t)&&t)
{
memset(c,0,sizeof(c));
for(i=1; i<=t; i++)
{
scanf("%d%d",&a,&b);
update(a,1);
update(b+1,-1);
}
for(i=1; i<=t-1; i++)
printf("%d ",getsum(i));
printf("%d",getsum(t));
putchar('\n');
}
}
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<set>
#include<map>
#include<algorithm>
#include<queue>
#include<stack>
#define length node[i].r-node[i].l+2
#define lson i<<1,l,m
#define rson i<<1|1,m+1,r
using namespace std;
const int N=1e5+10;
typedef long long ll;
struct Node
{
int l;
int r;
int mid()
{
return (l+r)/2.0;
}
};
ll ans;
struct Node node[N<<2];
ll add[N<<2];
ll sum[N<<2];
void push_up(int i) // 求当前下标 i 的最大值(最大值由左右孩子比较得到的)
{
sum[i]=sum[i<<1]+sum[i<<1|1];
}
void build(int i,int l,int r)// 建树并初始化
{
node[i].l=l;
node[i].r=r;
sum[i]=0;
add[i]=0;
if(l==r) // 出口 找到叶子节点输入最后一行的信息
{
cin>>sum[i];
return ;
}
int m=node[i].mid();
build(lson);
build(rson);
push_up(i);
}
void pushdown(int i,int l)
{
if(add[i])
{
add[i<<1]+=add[i];
add[i<<1|1]+=add[i];
sum[i<<1]+=add[i]*(l-(l>>1));
sum[i<<1|1]+=add[i]*(l>>1);
add[i]=0;
}
}
void update(int v,int l,int r,int i)
{
if(node[i].l==l&&node[i].r==r)
{
sum[i]+=(ll)v*(r-l+1);
add[i]+=v;
return ;
}// 更新完叶子节点之后 去更新它上边包含他的区间的最大值
pushdown(i,node[i].r-node[i].l+1);
int m=node[i].mid();
if(r<=m)
{
update(v,l,r,i<<1);
}
else
{
if(l>m)
update(v,l,r,i<<1|1);
else
{
update(v,l,m,i<<1);
update(v,m+1,r,i<<1|1);
}
}
push_up(i);
}
void query(int l,int r,int i)
{
if(node[i].l==l&&node[i].r==r) // 找到了你要找的目标区间,求出来该区间的最大值
{
ans+=sum[i]; // 比较的原因:如果是分离式的,要比较两部分求出一个最大值
return ;
}
pushdown(i,node[i].r-node[i].l+1);
int m=node[i].mid();
if(r<=m)
query(l,r,i<<1);
else
{
if(l>m)
query(l,r,i<<1|1);
else
{
query(l,m,i<<1);
query(m+1,r,i<<1|1);
}
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n,m;
while(cin>>n>>m)
{
build(1,1,n);
string s;
while(m--)
{
int a,b,c;
cin>>s;
if(s[0]=='Q')
{
ans=0;
cin>>a>>b;
query(a,b,1);
cout<<ans<<endl;
}
else
{
cin>>a>>b>>c;
update(c,a,b,1);
}
}
}