打卡-Task3:特征工程

打卡-Task3:特征工程

异常值处理

异常值处理:减少脏数据
a) 简单统计:如 describe() 的统计描述;散点图等;
b) 3∂ 法则(正态分布)/箱型图截断;
c) 利用模型进行离群点检测:聚类、K近邻、One Class SVM、Isolation Forest;
以二手车数据为例清洗数据

def outliers_proc(data, col_name, scale=3):
    """
    用于清洗异常值,默认用 box_plot(scale=3)进行清洗
    :param data: 接收 pandas 数据格式
    :param col_name: pandas 列名
    :param scale: 尺度
    :return:
    """

    def box_plot_outliers(data_ser, box_scale):
        """
        利用箱线图去除异常值
        :param data_ser: 接收 pandas.Series 数据格式
        :param box_scale: 箱线图尺度,
        :return:
        """
        iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25))
        val_low = data_ser.quantile(0.25) - iqr
        val_up = data_ser.quantile(0.75) + iqr
        rule_low = (data_ser < val_low)
        rule_up = (data_ser > val_up)
        return (rule_low, rule_up), (val_low, val_up)

    data_n = data.copy()
    data_series = data_n[col_name]
    rule, value = box_plot_outliers(data_series, box_scale=scale)
    index = np.arange(data_series.shape[0])[rule[0] | rule[1]]
    print("Delete number is: {}".format(len(index)))
    data_n = data_n.drop(index)
    data_n.reset_index(drop=True, inplace=True)
    print("Now column number is: {}".format(data_n.shape[0]))
    index_low = np.arange(data_series.shape[0])[rule[0]]
    outliers = data_series.iloc[index_low]
    print("Description of data less than the lower bound is:")
    print(pd.Series(outliers).describe())
    index_up = np.arange(data_series.shape[0])[rule[1]]
    outliers = data_series.iloc[index_up]
    print("Description of data larger than the upper bound is:")
    print(pd.Series(outliers).describe())
    
    fig, ax = plt.subplots(1, 2, figsize=(10, 7))
    sns.boxplot(y=data[col_name], data=data, palette="Set1", ax=ax[0])
    sns.boxplot(y=data_n[col_name], data=data_n, palette="Set1", ax=ax[1])
    return data_n
# 我们可以删掉一些异常数据,以 power 为例。  
# 这里删不删同学可以自行判断
# 但是要注意 test 的数据不能删 = = 不能掩耳盗铃是不是

Train_data = outliers_proc(Train_data, 'power', scale=3)

特征构造

目的:增强数据表达,添加先验知识。

  1. 统计量特征: a) 计数、求和、比例、标准差;
  2. 时间特征: a) 绝对时间、相对时间、节假日、双休日;
  3. 地理信息: a) 分桶;
  4. 非线性变换: a) 取 log/平方/根号;
  5. 数据分桶: a) 等频/等距分桶、Best-KS 分桶、卡方分桶;
  6. 特征组合

代码演示:

训练集和测试集放在一起,方便构造特征

Train_data['train']=1
Test_data['train']=0
data = pd.concat([Train_data, Test_data], ignore_index=True)

使用时间:data[‘creatDate’] - data[‘regDate’],反应汽车使用时间,一般来说价格与使用时间成反比
不过要注意,数据里有时间出错的格式,所以我们需要 errors=‘coerce’

data['used_time'] = (pd.to_datetime(data['creatDate'], format='%Y%m%d', errors='coerce') - 
                            pd.to_datetime(data['regDate'], format='%Y%m%d', errors='coerce')).dt.days

看一下空数据,有 15k 个样本的时间是有问题的,我们可以选择删除,也可以选择放着。
但是这里不建议删除,因为删除缺失数据占总样本量过大,7.5%
我们可以先放着,因为如果我们 XGBoost 之类的决策树,其本身就能处理缺失值,所以可以不用管;

data['used_time'].isnull().sum()

从邮编中提取城市信息,相当于加入了先验知识
计算某品牌的销售统计量,同学们还可以计算其他特征的统计量
这里要以 train 的数据计算统计量

data['city'] = data['regionCode'].apply(lambda x : str(x)[:-3])
data = data
Train_gb = Train_data.groupby("brand")
all_info = {}
for kind, kind_data in Train_gb:
    info = {}
    kind_data = kind_data[kind_data['price'] > 0]
    info['brand_amount'] = len(kind_data)
    info['brand_price_max'] = kind_data.price.max()
    info['brand_price_median'] = kind_data.price.median()
    info['brand_price_min'] = kind_data.price.min()
    info['brand_price_sum'] = kind_data.price.sum()
    info['brand_price_std'] = kind_data.price.std()
    info['brand_price_average'] = round(kind_data.price.sum() / (len(kind_data) + 1), 2)
    all_info[kind] = info
brand_fe = pd.DataFrame(all_info).T.reset_index().rename(columns={"index": "brand"})
data = data.merge(brand_fe, how='left', on='brand')

数据分桶 以 power 为例
这时候我们的缺失值也进桶了,
为什么要做数据分桶呢,原因有很多:

  1. 离散后稀疏向量内积乘法运算速度更快,计算结果也方便存储,容易扩展;
  2. 离散后的特征对异常值更具鲁棒性,如 age>30 为 1 否则为 0,对于年龄为 200 的也不会对模型造成很大的干扰;
  3. LR 属于广义线性模型,表达能力有限,经过离散化后,每个变量有单独的权重,这相当于引入了非线性,能够提升模型的表达能力,加大拟合;
  4. 离散后特征可以进行特征交叉,提升表达能力,由 M+N 个变量编程 M*N 个变量,进一步引入非线形,提升了表达能力;
  5. 特征离散后模型更稳定,如用户年龄区间,不会因为用户年龄长了一岁就变化
    当然还有很多原因,LightGBM 在改进 XGBoost 时就增加了数据分桶,增强了模型的泛化性
bin = [i*10 for i in range(31)]
data['power_bin'] = pd.cut(data['power'], bin, labels=False)
data[['power_bin', 'power']].head()

删除不需要的数据

data = data.drop(['creatDate', 'regDate', 'regionCode'], axis=1)
print(data.shape)
data.columns

导出数据

data.to_csv('data_for_tree.csv', index=0)

对于不同的模型,数据集的要求也是不一样的,所以有时候需要分开构造,再构造一份特征给 LR NN 之类的模型用为例,先看下数据分布

data['power'].plot.hist()

我们刚刚已经对 train 进行异常值处理了,但是现在还有这么奇怪的分布是因为 test 中的 power 异常值,所以我们其实刚刚 train 中的 power 异常值不删为好,可以用长尾分布截断来代替。

Train_data['power'].plot.hist()

对其取 log,再做归一化。

from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()
data['power'] = np.log(data['power'] + 1) 
data['power'] = ((data['power'] - np.min(data['power'])) / (np.max(data['power']) - np.min(data['power'])))
data['power'].plot.hist()

查看km数据

data['kilometer'].plot.hist()

km 的比较正常,应该是已经做过分桶了,直接做归一化就可以了。

data['kilometer'] = ((data['kilometer'] - np.min(data['kilometer'])) / 
                        (np.max(data['kilometer']) - np.min(data['kilometer'])))
data['kilometer'].plot.hist()

除此之外 还有我们刚刚构造的统计量特征:
‘brand_amount’, ‘brand_price_average’,‘brand_price_max’,‘brand_price_median’,‘brand_price_min’, ‘brand_price_std’,‘brand_price_sum’
这里不再一一举例分析了,直接做变换。

def max_min(x):
    return (x - np.min(x)) / (np.max(x) - np.min(x))

data['brand_amount'] = ((data['brand_amount'] - np.min(data['brand_amount'])) / 
                        (np.max(data['brand_amount']) - np.min(data['brand_amount'])))
data['brand_price_average'] = ((data['brand_price_average'] - np.min(data['brand_price_average'])) / 
                               (np.max(data['brand_price_average']) - np.min(data['brand_price_average'])))
data['brand_price_max'] = ((data['brand_price_max'] - np.min(data['brand_price_max'])) / 
                           (np.max(data['brand_price_max']) - np.min(data['brand_price_max'])))
data['brand_price_median'] = ((data['brand_price_median'] - np.min(data['brand_price_median'])) /
                              (np.max(data['brand_price_median']) - np.min(data['brand_price_median'])))
data['brand_price_min'] = ((data['brand_price_min'] - np.min(data['brand_price_min'])) / 
                           (np.max(data['brand_price_min']) - np.min(data['brand_price_min'])))
data['brand_price_std'] = ((data['brand_price_std'] - np.min(data['brand_price_std'])) / 
                           (np.max(data['brand_price_std']) - np.min(data['brand_price_std'])))
data['brand_price_sum'] = ((data['brand_price_sum'] - np.min(data['brand_price_sum'])) / 
                           (np.max(data['brand_price_sum']) - np.min(data['brand_price_sum'])))

对于类别信息,通常使用one-hot编码

# 对类别特征进行 OneEncoder
data = pd.get_dummies(data, columns=['model', 'brand', 'bodyType', 'fuelType',
                                     'gearbox', 'notRepairedDamage', 'power_bin'])
print(data.shape)
data.columns                                     

导出数据,这份数据可以给 LR 用

这份数据可以给 LR 用
data.to_csv('data_for_lr.csv', index=0)

特征筛选

目的:降低噪声,平滑预测能力和计算复杂度,增强模型预测性能。

  1. 过滤式(Filter):先用特征选择方法对初识特征进行过滤然后再训练学习器,特征 选择过程与后续学习器无关。
    a) Relief/方差选择/相关系数/卡方检验/互信息法
  2. 包裹式(Wrapper):直接把最终将要使用的学习器的性能作为衡量特征子集的评 价准则,其目的在于为给定学习器选择最有利于其性能的特征子集。
    a) Las Vegas Wrapper(LVM)
  3. 嵌入式(Embedding):结合过滤式和包裹式方法,将特征选择与学习器训练过程 融为一体,两者在同一优化过程中完成,即学习器训练过程中自动进行了特征选择。
    a) LR+L1或决策树

缺点:少类别提供信息太少,没有学会如何判别少数类。

  1. 扩充数据集;
  2. 尝试其他评价指标:AUC等;
  3. 调整θ值;
  4. 重采样:过采样/欠采样;
  5. 合成样本:SMOTE;
  6. 选择其他模型:决策树等;
  7. 加权少类别人样本错分代价;
  8. 创新: a) 将大类分解成多个小类; b) 将小类视为异常点,并用异常检测建模。

代码示例:

过滤式
相关性分析

print(data['power'].corr(data['price'], method='spearman'))
print(data['kilometer'].corr(data['price'], method='spearman'))
print(data['brand_amount'].corr(data['price'], method='spearman'))
print(data['brand_price_average'].corr(data['price'], method='spearman'))
print(data['brand_price_max'].corr(data['price'], method='spearman'))
print(data['brand_price_median'].corr(data['price'], method='spearman'))

相关性可视化分析

data_numeric = data[['power', 'kilometer', 'brand_amount', 'brand_price_average', 
                     'brand_price_max', 'brand_price_median']]
correlation = data_numeric.corr()

f , ax = plt.subplots(figsize = (7, 7))
plt.title('Correlation of Numeric Features with Price',y=1,size=16)
sns.heatmap(correlation,square = True,  vmax=0.8)

经验总结

特征工程是比赛中最至关重要的的一块,特别的传统的比赛,大家的模型可能都差不多,调参带来的效果增幅是非常有限的,但特征工程的好坏往往会决定了最终的排名和成绩。

特征工程的主要目的还是在于将数据转换为能更好地表示潜在问题的特征,从而提高机器学习的性能。比如,异常值处理是为了去除噪声,填补缺失值可以加入先验知识等。

特征构造也属于特征工程的一部分,其目的是为了增强数据的表达。

有些比赛的特征是匿名特征,这导致我们并不清楚特征相互直接的关联性,这时我们就只有单纯基于特征进行处理,比如装箱,groupby,agg 等这样一些操作进行一些特征统计,此外还可以对特征进行进一步的 log,exp 等变换,或者对多个特征进行四则运算(如上面我们算出的使用时长),多项式组合等然后进行筛选。由于特性的匿名性其实限制了很多对于特征的处理,当然有些时候用 NN 去提取一些特征也会达到意想不到的良好效果。

对于知道特征含义(非匿名)的特征工程,特别是在工业类型比赛中,会基于信号处理,频域提取,丰度,偏度等构建更为有实际意义的特征,这就是结合背景的特征构建,在推荐系统中也是这样的,各种类型点击率统计,各时段统计,加用户属性的统计等等,这样一种特征构建往往要深入分析背后的业务逻辑或者说物理原理,从而才能更好的找到 magic。

当然特征工程其实是和模型结合在一起的,这就是为什么要为 LR NN 做分桶和特征归一化的原因,而对于特征的处理效果和特征重要性等往往要通过模型来验证。

总的来说,特征工程是一个入门简单,但想精通非常难的一件事。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值