数论

目录

〇,约定

一,数论基础

1,生成元

二,数论常用知识

1,欧拉φ函数

2,欧拉定理

3,费马小定理

4,欧拉费马定理

5,威尔逊定理

6,gcd、lcm、裴蜀定理

7,唯一分解定理

8,取整函数

9,阶乘的性质

10,斯特林公式

11,费马数、梅森数、完全数

12,勾股数

13,数论组合

14,卢卡斯定理

15,高斯定理

16,逆元

17,和式

18,切比雪夫定理

19,多项式模

20,二次剩余

21,勒让德符号

22,欧拉准则

23,高斯引理

24,二次互反律

25,雅克比符号

26,合数模

27,单质数平方和

28,阶

29,原根

30,无穷素数

31,素数猜想

32,素数测试

三,定理证明

1,切比雪夫定理

2,奇质数有原根

3,奇质数p的原根个数是φ(p-1)


〇,约定

约定:p表示素数,其他字母默认表示正整数

(a,b)表示a和b的最大公约数,即gcd(a,b)

一,数论基础

1,生成元

\forall a,\{a+1,a+2,...,a+m\}\equiv \{1,2,...,m\}(mod\,m)

\forall a, \{a*1,a*2,...,a*m\}\equiv (a,m)*\{1,2,...,m/(a,m)\}(mod\,m)

(a,m)=1\rightarrow \{a*1,a*2,...,a*m\}\equiv \{1,2,...,m\}(mod\,m)

二,数论常用知识

1,欧拉φ函数

(1)对正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目。
        \varphi(x)=x \prod_{i=1}^{n}(1-\frac{1}{p_{i}})      (其中p1, p2……pn为x的所有质因数)
(2)若(a,b)=1,则\varphi(ab)=\varphi(a)\varphi(b),即这是积性函数
(3)1,2,3......n中,与n互素的所有数之和为\frac12n\varphi(n)

(4)由于\sum _{d|n}\varphi (d)是积性函数,所以可以推出\sum _{d|n}\varphi (d)=n

(5)如果函数f满足,任意n,\sum _{d|n}f(d)=n,那么f就是欧拉φ函数

2,欧拉定理

(a,m)=1\rightarrow a^{\varphi(m)}\equiv1(mod\,m)

PS:

(a,m)=1\rightarrow \{a*k|1\leq k\leq m,(k,m)=1\}\equiv \{k|1\leq k\leq m,(k,m)=1\}(mod\,m)

3,费马小定理

p\nmid a,则a^{p-1}\equiv1(mod\,p)

4,欧拉费马定理

  a^{p}\equiv a(mod\,p)

5,威尔逊定理

(p-1)!\equiv-1(mod\,p)

PS:欧拉定理、费马小定理、欧拉费马定理、威尔逊定理 统称数论四大定理。

PS:出于实用性的考虑,补充一个丑陋的式子:

a^{x+\varphi (m)}\equiv a^x(mod \, m),其中x大于等于m的所有素因子次数中的最高次数。

6,gcd、lcm、裴蜀定理

(a,b)是最大公约数,[a,b]是最小公倍数,(a,b)[a,b] = ab
  裴蜀定理:    裴蜀定理

7,唯一分解定理

(1)每个整数都有唯一的一种素因子分解形式n=p_1^{a_1}p_2^{a_2}...p_k^{a_k}
(2)n的正约数的个数是({a_1}+1)({a_2}+1)...({a_k}+1)
(3)n的所有正约数的和是

         \prod_{i=1}^{k}(1+p_{i}+p_{i}^2+...+p_{i}^{a_i}) \quad =\frac{p_1^{a_1+1}-1}{p_1-1}\cdot\frac{p_2^{a_2+1}-1}{p_2-1}\cdot...\cdot\frac{p_k^{a_k+1}-1}{p_k-1}
(4)\varphi(n)=n(1-\frac{1}{p_1})(1-\frac{1}{p_{2}}) \cdots(1-\frac{1}{p_{k}})

8,取整函数

向下取整 x-1< \lfloor x \rfloor \leqslant x<\lfloor x+1 \rfloor , 也叫高斯函数
向上取整 x \leqslant\lceil x\rceil<x+1
取小数部分 \quad\{x\}=x-\lfloor x \rfloor

PS:\lfloor x \rfloor 也可以写作 [x]

9,阶乘的性质

(1)n! \mid m(m+1)(m+2) \cdots(m+n-1)

(2)n!中素因子p的次数d,指的是满足p^d || n!的d

      利用富比尼原理得到,  d=[\frac{n}{p}]+[\frac{n}{p^2}]+[\frac{n}{p^3}]+......

(3)\forall a>0,b>0,\: [\frac{a}{b^{k+1}}]=[\frac{[\frac{a}{b^{k}}]}{b}]

        \therefore f(n,p)=[\frac{n}{p}]+f([\frac{n}{p}],p)    这里的f的含义同d

(4)n!的十进制表示中,末尾0的个数是f(n,5)

(5)(p-1)f(n,p)=n-s(n,p),其中s是n的p进制表示法中各位数之和。

10,斯特林公式

n!\, =\, \sqrt{2\pi n}\left ( \frac{n}{e} \right )^n e^{\alpha _n}, \, \,\, \frac{1}{12n+1}<\alpha _n<\frac{1}{12n}

11,费马数、梅森数、完全数

(1)若2^m+1是奇素数,则m=2^n,形如2^{2^n}+1的素数称为费马数,所有费马数之间都是互素的

(2)若a^m-1是奇素数,则a=2且m是素数p,形如2^p-1的素数称为梅森数

(3)如果2^p-1是素数,则2^{p-1}(2^p-1)是完全数。如果n是偶完全数,则n=2^{p-1}(2^p-1),其中2^p-1是梅森数

12,勾股数

不定方程_nameofcsdn的博客-CSDN博客

13,数论组合

(1)n=(a_ka_{k-1}...a_1a_0)_p,则n!中p的次数为[\frac np]+[\frac n{p^2}]+[\frac n{p^3}]+...=\frac{n-s}{p-1},其中s=a_k+a_{k-1}+...+a_1+a_0是n的各位数字之和。
(2)p\mid C_p^k, \, k=1,2,3...p-1
(3)C_{p-1}^k\equiv(-1)^k(mod\,p),\, k=0,1,2,3...p-1
(4)C_k^p\equiv[\frac kp](mod\,p)

14,卢卡斯定理

其中 0<= q,r <p

15,高斯定理

n为平方和等价于n的任一4k+3型素因子的幂次为偶数
https://blog.csdn.net/nameofcsdn/article/details/79459432

16,逆元

若(a,m)=1,则a^{\varphi(m)}\equiv1(mod\,m),所以a的逆元是a^{\varphi(m)-1}

若(a,m)不为1,则没有逆元

17,和式

p\mid\sum_{0<i<j<p}ij\qquad p\mid\sum_{0<i<j<p}i^{-1}j^{-1}\qquad p^2\mid\sum_{0<i<p}i^{-1}
其中-1次方表示逆元

18,切比雪夫定理

对于任意实数x\ge1,一定存在素数p,使得x<p\le2x成立。
换句话说,所有素数从小到大排列,任意一个素数都小于前一个素数的2倍。

PS:证明在下文

19,多项式模

n \leq p, f(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}f(x) \equiv 0(\bmod p) 有 n 个解\Leftrightarrow x^{p}-x 除以 f(x)的余式的系数都是 p 的倍数。

20,二次剩余

(1)一般二次同余式ax^2+bx+c\equiv 0(mod\, m), a\not\equiv 0(mod \, m) 可以规约成x^2\equiv A(mod \, m)的形式

(2)如果x^2\equiv a(mod \, m)有解,则a叫mod m的平方剩余,否则叫非平方剩余

21,勒让德符号

\left ( \frac{a}{p} \right )=\left\{\begin{matrix}0,\: if\, p\mid a\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \; \; \; \; \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ 1,\: if\, p\nmid a, \exists x,x^2\equiv a(mod \, p) \\ -1,if\, p\nmid a, \nexists x,x^2\equiv a(mod \, p) \end{matrix}\right.

22,欧拉准则

若p为奇素数,则a^{\frac{p-1}{2}} \equiv \left ( \frac{a}{p} \right )\, (mod\, p)

23,高斯引理

 {p}\nmid{a}, {ak}\left({k}=1,2,3 \ldots \frac{​{p}-1}{2}\right) 对模 p 的最小非负剩余是 {r}_{k}, 若大于\frac{​{p}}{2}{r}_{k} 个数为m, 则 \left(\frac{​{a}}{p}\right)=(-1)^{​{m}}

24,二次互反律

(1) \left(\frac{2}{​{p}}\right)=(-1)^{\frac{p^{2}-1}{8}}, 若 {p}\nmid{a} 且 a 为奇数 , 则 \left(\frac{​{a}}{p}\right)=(-1)^{\sum_{k=1}^l\left[\frac{a k}{p}\right]}, 其中 l=\frac{​{p}-1}{2}

(2) p, q 为奇质数, \sum_{k=1}^{u}\left[\frac{​{p} k}{q}\right]+\sum_{k=1}^{l}\left[\frac{q k}{p}\right]=ul, 其中{u}=\frac{​{q}-1}{2}, l=\frac{​{p}-1}{2}

(3) \left(\frac{​{p}}{q}\right)=(-1)^{\frac{(p-1)(q-1)}{4}}\left(\frac{q}{p}\right)

25,雅克比符号

\left(\frac{​{a}}{m}\right)=\left(\frac{​{a}}{p_1}\right)\left(\frac{​{a}}{p_2}\right)...\left(\frac{​{a}}{p_r}\right)

其中m=p_1p_2...p_r 表示m中的所有素因子

当m为素数时,雅克比符号和勒让德符号含义相同,所以用相同的符号来不矛盾。

26,合数模

(1)p为奇质数, \exists x,{x}^{2} \equiv a\left(\bmod p^{k}\right)\Leftrightarrow\left(\frac{​{a}}{p}\right)=1 , 若x有解则恰有 2 解

(2)\exists x,{x}^{2} \equiv {a}\left(\bmod 2^{k}\right) ({k}>2)\Leftrightarrow {a} \equiv 1(\bmod 8),若x有解则恰有 4 解

27,单质数平方和

(1){p}\nmid{k},\, \sum_{x=0}^{​{p}-1}\left(\frac{​{x}(x+k)}{p}\right)=-1

(2)若 {p}=4 {~m}+1, {p}\nmid{k}, 设 {S}({k})=\sum_{x=0}^{​{p}-1}\left(\frac{​{x}\left(x^{2}+k\right)}{p}\right), 则S(k)是偶数, 且{S}\left({kt}^{2}\right)=\left(\frac{​{t}}{p}\right) {S}({k})
(3)若\quad\left(\frac{​{r}}{p}\right)=1,\left(\frac{​{n}}{p}\right)=-1{r} \times 1^{2}, {r} \times 2^{2}, {r} \times 3^{2} \ldots \ldots {r} \times\left(\frac{p-1}{2}\right)^{2},{n} \times 1^{2}, {n} \times 2^{2}, {n} \times 3^{2} \ldots \ldots {n} \times\left(\frac{p-1}{2}\right)^{2}为mod p的简化剩余系
(4)若 p=4m+1, 则 {p}=\left(\frac{1}{2} {~S}({r})\right)^{2}+\left(\frac{1}{2} {~S}({n})\right)^{2}

28,阶

(1)若({a}, {m})=1,  则存在 j 满足{a}^{j} \equiv 1 \quad(\bmod {m}),其中满足条件的最小j叫a模m的指数,也叫阶(Multiplicative order)

In other words, the multiplicative order of a modulo n is the order of a in the multiplicative group of the units in the ring of the integers modulo n.

即以a作为单位元素的乘法同余群的阶

(2)若 x 的阶为ab,a>0,b>0,则x^a的阶为b

(3)若 x 的阶为j, 则 x^a 的阶为 \frac{j}{(a, j)}

(4)x 的阶为 a, y 的阶为 b, 如(a,b)=1,则 xy 的阶为ab

29,原根

(1)使阶为 \varphi({m})的a 叫模m的原根f

(2)奇质数p有原根

(3)g是mod奇质数p的原根,则 \exists c,p||(g+pc)^{p-1}-1,且对于这个c,p^k||(g+pc)^{p^{k-1}(p-1)}-1,进一步可证明g+pc是mod\,p^k的原根

(4)奇质数p,设g是 mod\,{p}^{k}的原根,则g与 {g}+{p}^{k} 中的奇数是 mod\,2{p}^{k} 的原根

(5)mod m的原根存在的充分必要条件是m=2或4或p^k2p^k,其中p是奇质数

(6)求原根的方法:设m>1, (g,m)=1,φ(m)的所有不同质因数是q_1,q_2,...,q_k

        则g是mod m的原根\Leftrightarrow g^ {\varphi(m)/q_i}\not\equiv 1(mod \, m), i=1,2,...,k

(7)奇质数p的原根个数是φ(p-1)

        PS:(2)(7)证明在下文

30,无穷素数

(1)素数有无穷多个

(2)存在无穷多素数模4余3,存在无穷多素数模4余1

(3)狄利克雷定理:gcd(a,m)=1,则存在无穷多素数p,p\equiv a(mod\,m)

(4)设不超过x的素数的个数为π(x),则\lim\frac{\pi (x)}{x/lnx}=1,即x很大时,不超过x的素数个数大约就是x/lnx

31,素数猜想

(1)哥德巴赫猜想:大于2的偶数都可以表示成2个素数之和

陈景润证明了大于2的偶数都可以表示成一个偶数加一个2-殆素数,2-殆素数表示素数或者2个素数的乘积。

(2)孪生素数猜想:存在无穷多对孪生素数,即有无穷组素数(p1,p2)满足p2-p1=2

    自从张益唐证明有无穷多组满足p2-p1<=70000000之后,这个数字在不断缩小,现在已经到246了。

(3)N^2+1猜想:有无穷多形如N^2+1的素数

目前已经证明,有无穷多形如N^2+1的数都是素数或者2个素数的乘积

32,素数测试

(1)暴力测试

枚举不超过sqrt(n)的所有素数,判断有没有n的因子

(2)费马测试

随机取1个整数a,如果a^{n}\not\equiv a(mod n),那么m不是素数

多取几个a,如果a^{n}\equiv a(mod n)都成立,那么n有极大可能是素数

存在反例:卡米歇尔数

(3)米勒-拉宾测试(Miller–Rabin)

对于奇数n,设n-1=2^k * q,k>0,q是奇数

如果n\nmid a,\,a^q\not\equiv 1(mod n),且对i=0,1,2...k-1都有a^{2^iq}\not\equiv -1(modn)

则n不是素数,反之多取几个a之后就能推断n有极大可能是素数。

事实上,如果n是合数,至少有75%的a可以用来证明n不是素数,所以只要多取几个a,准确性就非常高。

三,定理证明

1,切比雪夫定理

(1)当n\ge5时,\frac{2^{2n-1}}n<C_{2n}^n<2^{2n-2}
\left ( \prod_{n<p\le 2n}p \right )\mid C_{2n}^n,\: so\: \left ( \prod_{n<p\le 2n}p \right )\le C_{2n}^n<2^{2n-2}
(2)设正实数b>10,a_k=\lceil\frac b{2^k}\rceil,则\frac b{2^k}\le a_k<\frac b{2^k}+1,a_k\le 2a_{k+1}
设m是使得a_m>5的最大整数,则 (a_m,2a_m]\cup(a_{m-1},2a_{m-1}]\cup...\cup(a_1,2a_1] 覆盖(10,b],故而  \prod_{10<p\le b}p\le\prod_{a_1<p\le 2a_1}p\prod_{a_2<p\le 2a_2}p...\prod_{a_m<p\le 2a_m}p<2^{2b}
(3)C_{2n}^n中显然没有超过2n的素数,且有如下三条定理:
对于区间(1,2n]内任一素数,存在r使得p^r\le2n<p^{r+1},则C_{2n}^n中p的幂次t不超过r
对于区间(\sqrt{2n},n]内任一素数p(如果存在,下同),C_{2n}^n中p的幂次不超过1
对于区间(\frac{2n}3,n]内任一素数p,C_{2n}^n中p的幂次为0
故而,当n>24时有:
{C}_{2{n}}^{​{n}}=\prod_{1<{p} \le \sqrt{2 {n}}} {p}^{​{t}} \cdot \prod_{\sqrt{2 {n}}<{p} \le\frac{2 {n}}{3}} {p} \cdot \prod_{​{n}<{p} \leq 2 {n}} {p}
\leq \prod_{1<{p} \leq \sqrt{2 n}}(2 n) \cdot \prod_{\sqrt{2n}<p\le \frac{2 n}{3}} p \cdot \prod_{n<p \leq 2 n} p
\leq(2 n)^{\sqrt{2 n}-1} \cdot 2^{2 \times \frac{2 n}{3}} \cdot \prod_{n<p \leq 2 n} p
=(2 n)^{\sqrt{2 n}-1} \cdot 2^{\frac{4 n}{3}} \cdot \prod_{n<p \leq 2 n} p
(4)当t\ge30时,2^{\frac t6}>t,结合(1)(3)得,当n>500时有(\prod_{n<p \leq 2 n} p)>1,即(n, 2n]内有素数。
当n<=500时显然也成立,故切比雪夫定理成立。

2,奇质数有原根

对奇质数p,设 1,2,3...p-1 的阶分别为 {j}_{1}, {j}_{2} \ldots {j}_{p-1}, 令 {t}=lcm\left[{j}_{1}, {j}_{2} \ldots {j}_{p-1}\right]

t=p_1^{a_1}p_2^{a_2}...p_k^{a_k},则\exists x_i(i=1,2...k)x_i 的阶是p_i^{a_i}, 所以 g=\prod_{i=1}^k x_i 的阶是t

而t可以证明是等于p-1的,所以g是mod p的原根

3,奇质数p的原根个数是φ(p-1)

(1)如果n整除p-1,那么方程x^n\equiv 1(mod p)恰好有n个解

(2)假设f(d)是集合{0<x<p且x mod p的阶是d}的元素个数

(3)如果n整除p-1,那么方程x^n\equiv 1(mod p)的解的个数是\sum _{d|n}f(d)

(4)\sum _{d|n}f(d)=n,所以f就是欧拉φ函数

(5)取n=p-1,则集合{0<x<p且x mod p的阶是p-1}的元素个数是φ(p-1),即原根个数是φ(p-1)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值