裴蜀定理

目录

裴蜀定理

OJ实战

力扣 1250. 检查「好数组」

力扣 2543. 判断一个点是否可以到达


裴蜀定理

裴蜀定理:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。

OJ实战

力扣 1250. 检查「好数组」

给你一个正整数数组 nums,你需要从中任选一些子集,然后将子集中每一个数乘以一个 任意整数,并求出他们的和。

假如该和结果为 1,那么原数组就是一个「好数组」,则返回 True;否则请返回 False

示例 1:

输入:nums = [12,5,7,23]
输出:true
解释:挑选数字 5 和 7。
5*3 + 7*(-2) = 1

示例 2:

输入:nums = [29,6,10]
输出:true
解释:挑选数字 29, 6 和 10。
29*1 + 6*(-3) + 10*(-1) = 1

示例 3:

输入:nums = [3,6]
输出:false

提示:

  • 1 <= nums.length <= 10^5
  • 1 <= nums[i] <= 10^9
class Solution {
public:
    bool isGoodArray(vector<int>& nums) {
        auto ans=0;
        for(auto x:nums){
            ans=gcd(ans,x);
        }
        return ans==1;
    }
    long long gcd(long long a, long long b)
    {
        return b ? gcd(b, a%b) : a;
    }
};

力扣 2543. 判断一个点是否可以到达

给你一个无穷大的网格图。一开始你在 (1, 1) ,你需要通过有限步移动到达点 (targetX, targetY) 。

每一步 ,你可以从点 (x, y) 移动到以下点之一:

  • (x, y - x)
  • (x - y, y)
  • (2 * x, y)
  • (x, 2 * y)

给你两个整数 targetX 和 targetY ,分别表示你最后需要到达点的 X 和 Y 坐标。如果你可以从 (1, 1) 出发到达这个点,请你返回true ,否则返回 false 

示例 1:

输入:targetX = 6, targetY = 9
输出:false
解释:没法从 (1,1) 出发到达 (6,9) ,所以返回 false 。

示例 2:

输入:targetX = 4, targetY = 7
输出:true
解释:你可以按照以下路径到达:(1,1) -> (1,2) -> (1,4) -> (1,8) -> (1,7) -> (2,7) -> (4,7) 。

提示:

  • 1 <= targetX, targetY <= 109

思路:把4个操作分2类,前2个使得gcd不变,后2个使得gcd不变或者乘2

再根据裴蜀定理,gcd为1的点都可以到达(1,1)点。

class Solution {
public:
	bool isReachable(int targetX, int targetY) {
		int g = Gcd(targetX, targetY);
		return (g&-g) == g;
	}
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值