生日问题

目录

一,生日问题

二,一般性生日问题

三,相关问题

四,函数值估算


一,生日问题

In probability theory, the birthday problem or birthday paradox concerns the probability that, in a set of n randomly chosen people, some pair of them will have the same birthday. In a group of 23 people, the probability of a shared birthday exceeds 50%, while a group of 70 has a 99.9% chance of a shared birthday.

23个人的生日全都不同的概率是(1-\frac{1}{366})(1-\frac{2}{366})...(1-\frac{22}{366}),约等于50%

70个人的生日全都不同的概率是(1-\frac{1}{366})(1-\frac{2}{366})...(1-\frac{69}{366}),约等于0.1%

二,一般性生日问题

在一个有k个不同元素的集合中,不放回地取n个数,全都不同的概率是(1-\frac{1}{k})(1-\frac{2}{k})...(1-\frac{n-1}{k})

(1)概率p函数

p(n)=(1-\frac{1}{k})(1-\frac{2}{k})...(1-\frac{n}{k}),则全都不同的概率可以表示成p(n-1)

p(0)=1, p(1)=1-\frac{1}{k}, ...,\, p(k-1)=(1-\frac{1}{k})(1-\frac{2}{k})...(1-\frac{k-1}{k}),\, p(k)=0

(2)求和式f函数

f(n)=\sum_{t=1}^np(t)=\sum_{t=1}^n(1-\frac{1}{k})(1-\frac{2}{k})...(1-\frac{t}{k})

f(0)=1, f(1)=1-\frac{1}{k}\, , ...,\,f(k-1)=\sum _{t=1}^{k-1}p(t)\, ,\, f(k)=f(k-1)

(3)求和式g函数

\begin{aligned} g(n)=\sum_{t=1}^{n} t p(t) &=\sum_{t=1}^{n} t\left(1-\frac{1}{k}\right)\left(1-\frac{2}{k}\right) \cdots\left(1-\frac{t}{k}\right) \\ &=k \sum_{t=1}^{n} \frac{t+1}{k} \cdot\left(1-\frac{1}{k}\right)\left(1-\frac{2}{k}\right) \cdots\left(1-\frac{t}{k}\right)-\sum_{t=1}^{n}\left(1-\frac{1}{k}\right)\left(1-\frac{2}{k}\right) \cdots\left(-\frac{t}{k}\right) \\ &=k\left(f(n)-f(n+1)+1-\frac{1}{k}\right)-f(n) \end{aligned}

即 g(n)=k-1-k p(n+1)-f(n)

g(0)=0, g(1)=1-\frac{1}{k},...,g(k-1)=k-1-f(k-1), g(k)=g(k-1)

(4)求和式h函数

\begin{aligned} h(n)=\sum_{t=1}^{n} t^{2} p(t) &=\sum_{t=1}^{n} t^{2}\left(1-\frac{1}{k}\right)\left(1-\frac{2}{k}\right) \cdots\left(1-\frac{t}{k}\right) \\ &=k \cdot \sum_{t=1}^{n} t \cdot \frac{t+1}{k}\left(1-\frac{1}{k}\right)\left(1-\frac{2}{k}\right) \cdots\left(1-\frac{t}{k}\right)-g(n) \\ &=k(g(h)-g(n+1)+f(n+1))-g(n) \\ &=kf(n+1)+f(n)-k n p(n+1)-k+1\\&=(k+1) f(n)-k(n-1) p(n+1)-k+1 \end{aligned}

h(0)=0, h(1) =1-\frac{1}{k}, \cdots h(k-1)=(k+1) f(k-1)-k+1, h(k)=h(k-1)

三,相关问题

在一个有k个不同元素的集合中,不放回地取数,一直到第一次出现重复的数为止,取数的数目(包括最后这个重复的数)的均值是多少呢?

E=\sum _{t=2}^{k+1}p(t-2)\frac{t-1}{k}t=\frac{h(k-1)+3g(k-1)+f(k-1)+2}{k}

所以 E=(1-\frac{1}{k})f(k-1)+2,其中f(k-1)=\sum _{t=1}^{k-1}p(t)

所以E=2+(1-\frac{1}{k})\sum _{t=1}^{k-1}(1-\frac{1}{k})(1-\frac{2}{k})...(1-\frac{t}{k})

四,函数值估算

p(n)=(1-\frac{1}{k})(1-\frac{2}{k})...(1-\frac{n}{k})<e^{-\frac{1}{k}}e^{-\frac{2}{k}}...e^{-\frac{n}{k}}=e^{-\frac{n(n+1))}{2k}}

f(n)=\sum_{t=1}^np(t)=\sum_{t=1}^n(1-\frac{1}{k})(1-\frac{2}{k})...(1-\frac{t}{k})

u=\left \lfloor \sqrt k \right \rfloor

f(k-1)< \sum _{t=1}^u 1+\sum _{t=u+1}^{k-1}(1-\frac{1}{k})(1-\frac{2}{k})...(1-\frac{t}{k})\\ <u+\sum _{t=u+1}^{k-1}(1-\frac{1}{k})(1-\frac{2}{k})...(1-\frac{u+1}{k})(1-\frac{u+1}{k})^{t-u-1}\\ <u+\frac{k}{u+1}(1-\frac{1}{k})(1-\frac{2}{k})...(1-\frac{u+1}{k})\\ <u+\frac{k}{u+1}e^{-\frac{(u+1)(u+2)}{2k}}

所以f(k-1)<u+\frac{k-u}{u}e^{-\frac{1}{2}}<(1+e^{-\frac{1}{2}})\sqrt k-e^{-\frac{1}{2}}

所以E=(1-\frac{1}{k})f(k-1)+2<(1+e^{-\frac{1}{2}})\sqrt k+2

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值