卡米歇尔(Carmichael)数、函数

目录

一,卡米歇尔数

二,Carmichael函数


一,卡米歇尔数

(1)版本一

对于合数m,如果对于所有a,(a,m)=1,都有a^{m-1}\equiv 1(mod m),则这样的的m称为卡米歇尔数。

或者:对于合数m,如果对于所有a,(a,m)=1,都有a^{m}\equiv a(mod m),则这样的的m称为卡米歇尔数。

PS:显然这2个表述是等价的

性质:卡米歇尔数都是奇数

(2)版本二

对于合数m,如果对于所有a,都有a^{m}\equiv a(mod m),则这样的的m称为卡米歇尔数。

PS:版本二的条件包括了版本一的条件,所以版本一的卡米歇尔数集合包括了版本二的,版本一里面的性质对于版本二也成立。

性质:卡米歇尔数中任何素因子的次数都是1,换句话说,卡米歇尔数的任何因子都不是完全平方数。

(3)卡米歇尔数(版本二)的考赛特判别法

奇数m是卡米歇尔数当且仅当对于m的每个素因子p都有:p的次数是1,且p-1|m-1

(4)存在无穷多个卡米歇尔数

二,Carmichael函数

性质:

(1)\lambda(n)|\varphi(n) 

(2)若(a,n)= 1,则a^{\lambda(n)}\equiv 1(mod\,n)

(3)存在模n原根的充要条件是,\lambda(n)=\varphi(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值