卡迈克尔数 Carmichael Numbers(挑战程序设计竞赛)

本文介绍了一种判断给定整数是否为Carmichael数的方法,通过编程实现快速幂运算并验证Carmichael数的性质。核心在于利用合数的定义,检查对于所有与n互质的正整数b,是否满足b^(n-1) ≡ 1 (mod n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们把对任意的 1<x<n 都有 x^n≡x 成立的合数 n 称为 Carmichael Number

对于给定的整数n, 请判断它是不是 Carmichael Number

输入

  • 多组测试数据,每组测试数据占据一行,一个整数 n,当输入的 n=0 时表示结束(不用处理 n=0)
  • 除最后一行外,2<n<65000

输出

  • 每组测试数据输出一行
  • 当 n 是 Carmichael Number 时,输出 The number {输入的整数n} is a Carmichael number.
  • 当 n 不是 Carmichael Number 时,输出 {输入的整数n} is normal.

样例 1

输入

1729
17
561
1109
431
0

输出

The number 1729 is a Carmichael number.
17 is normal.
The number 561 is a Carmichael number.
1109 is normal.
431 is normal.

卡迈克尔数的定义是对于合数n,如果对于所有正整数b,b和n互素,都有同余式b^(n-1)≡ 1 (mod n)成立,则合数n为Carmichael数。

卡迈克尔数是合数,所以需要先判断n是否是素数

an mod n=(a mod n)n mod n=a

#include<bits/stdc++.h>
using namespace std;

int isprime(int n)
{
    for (int i = 2; i*i <= n; i++)
        if (n%i == 0)
            return 0;
    return 1;
}
long long quickPow(long long base,long long power,long long p)
{
    long long result=1;
    while(power>0){
        if(power%2==1){
            result=result*base%p;
        }
        power=power/2;
        base=base*base%p;
    }
    return result;
}

int main()
{
    int n;
    while(cin>>n){
        if(n==0)
            break;
        int flag = 1;
        if(isprime(n))
            flag=0;
        for(int i=2;i<n;i++){
            if(quickPow(i,n,n)!=i){
                flag=0;
                // cout<<n<<" is normal."<<endl;
                // return 0;
            }
        }
        if(flag)
            cout<<"The number "<<n<<" is a Carmichael number."<<endl;
        else
            cout<<n<<" is normal."<<endl;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值