裴蜀定理学习

∀ a , b ∈ z , d = g c d ( a , b ) \forall a,b\in z,d=gcd\left(a,b \right ) a,bz,d=gcd(a,b)
关于 x , y x,y x,y的线性不定方程:(裴蜀等式) a x + b y = c ax+by=c ax+by=c有整数解 ( x , y ) ⇔ d ∣ c \left(x,y \right )\Leftrightarrow d\mid c (x,y)dc,有解时,则有无穷解
通解为 ( m 0 x 0 + k b d , m 0 y 0 − k a d ) ( k ∈ z ) \left(m_{0}x_{0}+\frac{kb}{d},m_{0}y_{0}-\frac{ka}{d} \right )\left( k\in z \right ) (m0x0+dkb,m0y0dka)(kz)
或者 ( c d x 0 + k b d , c d y 0 − k a d ) ( k ∈ z ) \left(\frac{c}{d}x_{0}+\frac{kb}{d},\frac{c}{d}y_{0}-\frac{ka}{d} \right )\left( k\in z \right ) (dcx0+dkb,dcy0dka)(kz)
其中 a x + b y = c , ( x 0 , y 0 ) ax+by=c,\left(x0,y0 \right ) ax+by=c,(x0,y0) a x 0 + b y 0 = d = g c d ( a , b ) ax_{0}+by_{0}=d=gcd\left(a,b \right) ax0+by0=d=gcd(a,b)的特解, m 0 = c d m_{0}=\frac{c}{d} m0=dc
证明:
先证明 a x + b y = g c d ( a , b ) ax+by=gcd\left ( a,b \right ) ax+by=gcd(a,b)有解
证明:
∵ d = g c d ( a , b ) \because d=gcd\left(a,b \right ) d=gcd(a,b)
∴ d ∣ a , d ∣ b \therefore d\mid a,d\mid b da,db
d ∣ ( a x + b y ) d\mid \left(ax+by \right ) d(ax+by)
s s s a , b a,b a,b的线性组合中最小的正元素,则 ∃ x , y ∈ z \exists x,y\in z x,yz,使 s = a x + b y ∈ z s=ax+by \in z s=ax+byz
q = ⌊ a s ⌋ q=\left \lfloor \frac{a}{s} \right \rfloor q=sa
r = a % s = a − q s = a − q ( a x + b y ) = ( 1 − q x ) a − b q y r=a\%s=a-qs=a-q\left(ax+by \right )=\left(1-qx\right)a-bqy r=a%s=aqs=aq(ax+by)=(1qx)abqy
∴ r \therefore r r也是 a , b a,b a,b的线性组合
∵ r = a % s \because r=a\%s r=a%s
∴ 0 ≤ r < s \therefore 0\leq r < s 0r<s (因为取余的结果必然小于模的数)
∵ s \because s s a , b a,b a,b的线性组合中最小的正元素
∴ r \therefore r r比线性组合中最小正元素的还小, r = 0 r=0 r=0
∴ s ∣ a \therefore s\mid a sa
同理可证 s ∣ b s\mid b sb
∴ s \therefore s s a , b a,b a,b的公约数
∵ d \because d d a , b a,b a,b的最大公约数
∴ d ≥ s \therefore d\geq s ds
∵ d ∣ ( a x + b y ) , s = a x + b y \because d\mid\left ( ax+by \right ),s=ax+by d(ax+by),s=ax+by
∴ d ∣ s \therefore d \mid s ds
∴ s ≥ d \therefore s\geq d sd
∵ d ≥ s \because d\geq s ds
∴ s = d = g c d ( a , b ) \therefore s=d=gcd\left ( a,b \right ) s=d=gcd(a,b)
a x + b y = s ax+by=s ax+by=s
a x + b y = g c d ( a , b ) ax+by=gcd\left ( a,b \right ) ax+by=gcd(a,b)有解

接着证明 g c d ( a , b ) ∣ c ⇔ a x + b y = c gcd\left ( a,b \right )\mid c \Leftrightarrow ax+by=c gcd(a,b)cax+by=c有整数解
证明:
充分性 d = g c d ( a , b ) d=gcd\left ( a,b \right ) d=gcd(a,b)
a x + b y = g c d ( a , b ) ax+by=gcd\left ( a,b \right ) ax+by=gcd(a,b)解为 ( x 0 , y 0 ) \left ( x_{0},y_{0} \right ) (x0,y0)
∵ d ∣ c \because d\mid c dc
∴ ∃ k ∈ z \therefore \exists k\in z kz, 使得 c = k d c=kd c=kd
∵ a x 0 + b y 0 = d \because ax_{0}+by_{0}=d ax0+by0=d
k a x 0 + k b y 0 = k d = c kax_{0}+kby_{0}=kd=c kax0+kby0=kd=c
∴ a x + b y = c \therefore ax+by=c ax+by=c的解为 ( k x 0 , k y 0 ) \left(kx_{0},ky_{0} \right ) (kx0,ky0)
必要性: a x 1 + b y 1 = c ax_{1}+by_{1}=c ax1+by1=c
d = g c d ( a , b ) d=gcd\left(a,b \right ) d=gcd(a,b)
∴ d ∣ a , d ∣ b \therefore d\mid a,d\mid b da,db
∴ d ∣ ( a x 1 + b y 1 ) \therefore d\mid \left ( ax_{1}+by_{1} \right ) d(ax1+by1)
∴ d ∣ c \therefore d\mid c dc
∴ g c d ( a , b ) ∣ c \therefore gcd(a,b)\mid c gcd(a,b)c

∴ g c d ( a , b ) ∣ c ⇔ a x + b y = c \therefore gcd\left(a,b \right )\mid c\Leftrightarrow ax+by=c gcd(a,b)cax+by=c 有整数解

最后证明有无穷解以及通解形式
证明:设 a x 0 + b y 0 = d , c = m 0 d ax_{0}+by_{0}=d,c=m_{0}d ax0+by0=d,c=m0d
a m 0 x 0 + b m 0 y 0 = m 0 d = c am_{0}x_{0}+bm_{0}y_{0}=m_{0}d=c am0x0+bm0y0=m0d=c
a ( m 0 x 0 + k d b ) + b ( m 0 y 0 − k a b ) ( k ∈ z ) = a m 0 x 0 + a k b d + b m 0 y 0 − b k a d = a m 0 x 0 + b m 0 y 0 = c \begin{aligned} &\quad a\left ( m_{0}x_{0}+\frac{kd}{b} \right )+b\left ( m_{0}y_{0}-\frac{ka}{b} \right )\left ( k\in z \right )\\ &=am_{0}x_{0}+a\frac{kb}{d}+bm_{0}y_{0}-b\frac{ka}{d}\\ &=am_{0}x_{0}+bm_{0}y_{0}\\ &=c \end{aligned} a(m0x0+bkd)+b(m0y0bka)(kz)=am0x0+adkb+bm0y0bdka=am0x0+bm0y0=c
a x + b y = c ax+by=c ax+by=c的通解为
( m 0 x 0 + k b d , m 0 y 0 − k a d ) ( k ∈ z ) \left ( m_{0}x_{0}+\frac{kb}{d},m_{0}y_{0}-\frac{ka}{d} \right )\left ( k\in z \right ) (m0x0+dkb,m0y0dka)(kz)
或者 ( c d x 0 + k b d , c d y 0 − k a d ) ( k ∈ z ) \left ( \frac{c}{d}x_{0}+\frac{kb}{d},\frac{c}{d}y_{0}-\frac{ka}{d} \right )\left ( k\in z \right ) (dcx0+dkb,dcy0dka)(kz)
也就是证明了无穷解
其中 a x + b y = c , ( x 0 , y 0 ) ax+by=c,\left ( x_{0},y_{0} \right ) ax+by=c,(x0,y0) a x 0 + b y 0 = d = g c d ( a , b ) ax_{0}+by_{0}=d=gcd\left ( a,b \right ) ax0+by0=d=gcd(a,b)的特解, m 0 = c d m_{0}=\frac{c}{d} m0=dc

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值