线搜索、柯西点

目录

一,无约束可微优化问题的线搜索算法

二,单调线搜索准则

1,Armijo准则

2,Goldstein准则

3,Wolfe准则

4,强Wolfe准则

三,非单调线搜索准则

1,Grippo准则

2,ZhangHager准则

四,收敛性分析

1,Zoutendijk定理

2,线搜索算法的收敛性

五,柯西点

1,定义

2,求解

3,性质


本文部分内容来自教材

一,无约束可微优化问题的线搜索算法

线搜索算法:

这一类算法可以理解为由2个部分组成:步长α、方向d

步长也叫学习率。

不合适的步长,要么导致无法收敛,要么导致收敛到非最优解。

线搜索准则就是,研究步长满足什么样的条件下,最终可以收敛到最优解。

线搜索算法可以分为单调线搜索算法、非单调线搜索算法,单调指的是是否每一步都比上一步更优、单调

相应的准则也分为单调线搜索准则、非单调线搜索准则。

二,单调线搜索准则

1,Armijo准则

α=0显然就满足Armijo准则,所以Armijo准则并不是充分条件。

Armijo准则一般不单独使用,而是作为其他准则的一部分。

2,Goldstein准则

3,Wolfe准则

其中,(2b)的右边式子一定是小于0的,所以(2b)的含义是,新点处d方向的下降速度显著低于旧点处d方向的下降速度。

4,强Wolfe准则

Wolfe准则的(2b)没有限定左边式子的上界,强Wolfe准则做出了修正:

三,非单调线搜索准则

1,Grippo准则

2,ZhangHager准则

四,收敛性分析

1,Zoutendijk定理

2,线搜索算法的收敛性

五,柯西点

1,定义

函数f(x)在x_k处的二阶近似可以表示成:

或者表示成:

m_k(d)=f(x_x)+g_k^Td+\frac{1}{2}d^TB_kd

那么,函数m_k(-tg_k) 在0\leq t\leq \frac{\Delta _k}{||g_k||}范围内的最小值对应的点,叫柯西点。

即柯西点x^c_k=x_k-t_kg_k

2,求解

m_k(-tg_k)=f(x_k)-g_k^Tg_kt+\frac{1}{2}g_k^TB_kg_kt^2,\: 0\leq t\leq \frac{\Delta _k}{||g_k||}

g_k^TB_kg_k\neq 0时这是一个关于t的二次函数,对称轴是\frac{||g_k||}{g_k^TB_kg_k},其中分子大于等于0恒成立。

所以可以分成两种情况:

(1)g_k^TB_kg_k\leq 0

t=\frac{\Delta _k}{||g_k||}时取到最小值

(2)g_k^TB_kg_k> 0

对称轴\frac{||g_k||}{g_k^TB_kg_k}\geq 0,所以当t=min(\frac{\Delta _k}{||g_k||},\frac{||g_k||}{g_k^TB_kg_k})时取到最小值

3,性质

柯西点其实就是近似函数沿着原函数的最速下降方向在有限范围内能找到的最优值

4,下降幅度

这个式子应该只需要把柯西点求解出的tk代入表达式就出来了,我没具体验证。

<think>好的,我现在需要处理用户关于西积分定理的查询。用户想了解复分析中的西积分定理相关内容。首先,我应该回忆一下西积分定理的基本概念,然后确定是否需要通过网络搜索来补充或验证我的知识,确保信息的准确性。 西积分定理的核心是单连通区域内解析函数的积分与路径无关,对吧?可能还需要提到格林定理或西-黎曼方程的应用。不过,用户的问题比较基础,可能需要先给出定理的陈述、条件和应用例子。 接下来,按照用户的要求,回答需要分步骤或方法,避免使用第一人称和步骤词汇。同时,要整合搜索到的内容,确保引用分散在回答中,而不是集中在末尾。还要注意数学公式的格式,行内公式用$包裹,独立公式用$$包裹。如果有代码的话,要用三个反引号注明语言,但西积分定理可能不需要代码示例,不过如果有数值计算的例子可能需要。 可能需要检查是否有常见的误解或特殊情况需要说明,比如区域是否为单连通、函数是否解析、闭合曲线的简单性等。同时,应用部分可以提到计算实积分的方法,或者与其他定理如留数定理的关系。 在生成相关问题部分,必须至少列出三个基于原问题和回答的问题。比如关于西积分公式的条件、与格林定理的联系,或者应用实例等。 现在,我需要确保回答的结构符合用户的要求:多个方法或步骤,每个之间换行。可能需要分点讨论定理陈述、条件、证明思路、应用等。同时,数学符号要正确格式化,例如积分号、复数符号等。 最后,相关问题部分要使用正确格式,标题在同一行,三个问题编号正确。需要检查是否有拼写错误或格式错误,避免影响用户体验。可能的问题包括定理的条件变化、与其他定理的比较,或者具体应用案例等。</think>西积分定理是复分析的核心定理之一,主要阐述了解析函数在特定条件下的积分特性。设$D$是单连通区域,$f(z)$在$D$内解析,$\gamma$是$D$内的任意分段光滑闭合曲线,则积分$\oint_\gamma f(z)dz = 0$。该定理成立的关键在于解析函数的全纯性质满足西-黎曼方程。 定理成立需要满足三个基本条件:被积函数在积分区域及其内部解析、积分路径为闭合曲线、区域为单连通域。当函数存在奇点时,需要采用留数定理处理,此时西定理不再直接适用。 对于多连通区域的情况,可通过引入割线将区域转化为单连通域进行处理。积分路径绕奇点$z_0$n周时,结果变为$2\pi i n\cdot \text{Res}(f,z_0)$,这为后续留数定理的应用奠定基础。 在工程计算中,该定理被广泛应用于实积分计算。通过构造适当的复变函数和积分路径,可将难以计算的实积分转化为复平面上的围道积分,例如: ```mathematica Integrate[1/(1 + z^2), {z, -Infinity, Infinity}] -> 计算为围道积分 ``` 计算结果$\pi$正是通过复平面半圆形围道的积分得到。 定理的证明通常采用格林定理和西-黎曼方程的组合方法。将复积分分解为实虚部: $$\oint_\gamma (u+iv)(dx+idy) = \oint (udx - vdy) + i\oint (vdx + udy)$$ 通过解析函数满足$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$和$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$,可证两个线积分均为零。 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值