PyTorch踩坑记录

本文作者回顾了使用PyTorch一年多的时间里遇到的各类问题,包括在执行`loss.backward()`时遇到的错误,训练过程中的NaN损失,RuntimeError: cuDNN_STATUS_EXECUTION_FAILED,以及训练时显存管理问题。通过分享这些问题的解决方法,为PyTorch初学者提供了宝贵的实战经验。
摘要由CSDN通过智能技术生成

使用Pytorch也一年多了,记录一下自己遇到的各种问题。

各种踩坑记录

loss.backward()报错

一种非常常见的错误,在网络前向传播时没问题,但是当loss.backward()时会报错
导致这个错误的原因非常多样

  1. in-place操作导致,具体的in-place操作有很多,例如squeeze_(), x[:]=y, 等等,网上相关资料很多,不细写
  2. loss需要是一个标量,如果是向量的话,需要loss = loss.sum();
  3. 有些向量不需要传递梯度时,使用x.detach()截断梯度传递;
  4. 一个非常有用的命令,可以加在loss.backward()外,方便定位具体哪一行导致的报错:
with torch.autograd.set_detect_anomaly(True): 
		loss.backward(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值