第二题:
题目说找出43亿个32位数字中至少出现两次的数字。因为32位无符号整数大概42.9亿多个,所以一定有重复元素。
大概思想是折中查找,比如第一次从2^31为基准,记录43亿个数字中位于[0, 2^31) 内的数字个数和[2^31, 2^32)内的数字个数。
如果其中某个区间的数字个数大于2^31个,则说明至少有一个数字重复出现。递归从这个区间开始折半查找。
原书后面的习题答案实在太过抽象。
我的理解是用到两个临时磁带空间A和B,在遍历原数据的时候,比如第一次遍历,将所有[0,2^31)内数字放入A,所有[2^31,2^32)内数字放入B。
选择A或B中数字个数超过2^31个的磁带进行递归遍历。
这样如答案所说,不能保证每次都将数量减半,比如第一次,有可能43亿个数字都在[0,2^31)内,这样下次遍历仍然要扫描43亿个数字。
这样总共要遍历logn次,每次n个元素,时间复杂度为O(nlogn)。
于是答案中那句 “如果当前范围内的m个证书中一定有重复元素,那么只在磁带上存储m+1个数字” 就好理解了:
比如第一次扫描时当A中个数已经超过2^31个,则就可以停止继续扫描了。因为此时A中肯定已经包含了重复元素。剩下的重复元素已经不用关心了。
这样每次遍历n个数字,当临时磁带上已经有m+1个数字的时候,即可进入下一个二分查找了。m为查找范围的数字个数,比如第一次为2^31。
这样总的时间复杂度是n+n/2+n/4+....+1 这个等比数列求和为2n。
故为线性时间复杂度。