最近在学习群组的发现,如何通过python 代码实现,说下我们的目标,捕获公司内网的5000多篇技术精英大赛的文章,然后对文章进行分词,最后计算出相关性,通过图的形式输出结果,在输出结果前,我们是无法知道文章的相似性,围绕这一目标进行学习。
本次主要是数据的抓取。
目标网站数据源如图
- 大致有5100篇文章 ,但是一页只有30多篇的样子,然后继续下拉,有个浏览更多
然后开启firefox,启动web开发者-控制台,直接看协议包,思路是直接利用firefox的cookie,然后进行模拟登陆获取。
查看第一个点击“全部帖子”走的是get协议,查看cookie有4个,通过测试实际有用的就最后一个 JSESSIONID,其实懒的话,4个一起丢cookie,好了默认第一页比较简单,然后点击“浏览更多”
发现多了很多参数,然后就思考这些参数的大致意思,应该是记录当前最大url地址和最小url地址,以及当前的页码,圈子id,总的页码,最开始的时候尝试手工记录页码,计算最大url和最小url,但后面想了下,post的数据应该是来源于表单,所以基于这点回头找了下页码源码,然后在响应里面找到了这部分值。