一、认识hadoop
1.什么是hadoop?
随着移动设备的广泛使用和互联网的快速发展,数据的增量和存量快速增加,硬件发展跟不上数据发展,单机很多时候已经无法处理TB、PB 级别的数据。如果一头牛拉不动货物,那么选择找几头牛一起拉货物比培育一头更强壮的牛更加容易。同理,对于单机无法解决的问题,综合利用多个普通机器的做法比打造一台超级计算机的做法可行性更高。这就是 Hadoop 的设计思想。
Hadoop是一个由Apache基金会所开发的分布式系统基础架构,主要用于在大量计算机集群上处理海量数据。Hadoop的设计目标是通过简单的编程模型,在大量计算机组成的集群中进行分布式数据的处理。它允许用户在不了解分布式底层细节的情况下,开发分布式程序。
2.了解hadoop的发展历史
Hadoop是由Apache软件基金会的Lucence项目创始人道格·卡廷创建的,Lucence是是一个应用广泛的文本搜索系统库。Hadoop起源于开源的网络搜索引擎Nutch,Nutch本身也是 Lucence项目的一部分。Hadoop的发展历史如图所示。
- 起源:
- Hadoop的起源可以追溯到Apache Nutch项目,这是Apache Lucene的一个子项目,旨在构建一个大型的全网搜索引擎,包括网页抓取、索引、查询等功能。然而,随着抓取网页数量的增加,Nutch遇到了严重的可扩展性问题。
- 2003年和2004年,Google分别发表了关于GFS(Google File System)和MapReduce的论文。这些论文为Hadoop的发展提供了重要的技术基础。
- 雏形实现:
- 受Google论文的启发,Doug Cutting(道格·卡丁)等人开始尝试实现MapReduce计算框架,并将它与NDFS(Nutch Distributed File System)结合,用以支持Nutch引擎的主要算法。
- 在Nutch 0.8版本中,Doug Cutting发现NDFS和MapReduce不仅可用于搜索引擎,还可以用于其他分布式处理场景。因此,他将NDFS和MapReduce以及其他一些基本组件分离出来,组成了一个新的框架Hadoop,同时NDFS改名为HDFS(Hadoop Distributed File System)。
- 正式诞生:2006年,Hadoop作为独立项目被引入Apache基金会,标志着Hadoop的正式诞生。Hadoop的命名来源于Doug Cutting儿子的玩具大象。
- 快速发展:
- 2007年,第一个Hadoop用户组会议召开,社区贡献开始急剧上升。同年,Facebook、百度和中国移动等公司开始使用Hadoop。
- 2008年,Hive和HBase等Hadoop生态系统中的关键组件问世,Hadoop成为Apache的顶级项目。同年,第一个Hadoop商业化公司Cloudera成立,淘宝也开始使用Hadoop。
- 持续演进:自2008年以来,Hadoop及其生态系统持续发展,包括新的组件、功能和优化。Hadoop被广泛应用于各种大数据处理场景,成为大数据领域的核心技术之一。
- 特性与优点:Hadoop以其高可靠性、高扩展性、高效性、高容错性和低成本等特性而受到广泛认可。它允许用户在不了解分布式底层细节的情况下,开发分布式程序,充分利用集群的威力进行高速运算和存储。
3.hadoop的特点
Hadoop是一个由Apache基金会所开发的分布式系统基础架构,其主要特点可以归纳为以下几点:
- 高可靠性:Hadoop采用了分布式存储和计算的方式,数据会被复制到多个节点上,从而确保数据的可靠性和容错性。它假设计算元素和存储会失败,因此维护多个工作数据副本,确保能够针对失败的节点重新分布处理。
- 高扩展性:Hadoop可以很容易地扩展到成百上千台服务器,处理大规模数据。它采用无共享架构,能够在可用的计算机集簇间分配数据并完成计算任务,这些集簇可以方便地扩展到数以千计的节点中。
- 高性能:Hadoop采用MapReduce并行计算模型,可以高效地处理大规模数据。它通过并行处理加快处理速度,能够在节点之间动态地移动数据,并保证各个节点的动态平衡,处理速度非常快。
- 易用性:Hadoop提供了简单易用的API和工具,使开发人员可以方便地开发和管理大数据应用。用户可以在不了解分布式底层细节的情况下,开发分布式程序,充分利用集群的威力进行高速运算和存储。
- 开源性:Hadoop是开源的,可以免费获取和使用,同时可以根据需求进行自定义和扩展。这降低了使用门槛,使得更多人可以参与到Hadoop的开发和使用中来。
- 生态系统丰富:Hadoop生态系统中有很多相关工具和技术,如Hive、Pig、HBase等,可以方便地构建复杂的大数据应用。这些工具和技术为Hadoop提供了强大的支持,使得Hadoop能够处理各种类型的数据和满足各种需求。
- 支持多种数据类型:Hadoop支持多种数据类型,包括结构化数据、半结构化数据和非结构化数据。这使得Hadoop能够处理各种类型的数据,包括文本、图像、音频和视频等。
总之,Hadoop以其高可靠性、高扩展性、高性能、易用性、开源性、丰富的生态系统和支持多种数据类型等特点,成为了大数据处理领域的佼佼者。
4.了解Hadoop的核心组件
Hadoop主要由以下三个核心组件构成:
-
Hadoop Distributed File System (HDFS): 这是一个分布式文件系统,用于存储大数据集。HDFS将数据分散存储在一组计算机上,这些计算机被称为数据节点(DataNode)。HDFS还包含一个名称节点(NameNode),用于管理文件系统的元数据(如文件名称、位置等)。
-
MapReduce: 这是一个分布式计算框架,允许用户在大量数据上进行高效的批处理操作。MapReduce将一个任务分为两个阶段:Map阶段和Reduce阶段。在Map阶段,系统对输入数据执行映射操作,并生成一系列的键值对。在Reduce阶段,系统对这些键值对进行聚合操作,并输出最终结果。
-
YARN:YARN是Hadoop的资源管理器,负责集群中的资源分配和任务调度。它允许在Hadoop集群上运行多种不同的分布式计算框架,如MapReduce、Spark等。YARN提供了灵活的资源分配和任务调度机制,是Hadoop生态系统中资源管理的关键组件。它使得Hadoop集群能够更有效地利用计算资源,并提高了整个系统的吞吐量和响应速度。
(1)了解分布式文件系统——HDFS
HDFS(Hadoop Distributed File System)是Hadoop生态系统中的分布式文件系统,专为存储和处理大规模数据集而设计。以下是关于HDFS的详细特点、结构和相关信息的清晰归纳:
1. 特点和目标
- 高容错性:HDFS被设计成高度容错的系统,适合部署在廉价的机器上。它通过数据冗余和自动故障恢复机制来提供高可靠性和容错性。
- 高吞吐量:HDFS提供高吞吐量的数据访问,适合大规模数据集上的应用。通过将大文件划分为较小的数据块,并将这些数据块分布在集群中的多个节点上,实现了并行读取和写入,提高了数据处理的效率。
- 扩展性:HDFS能够处理PB级以上的数据规模。它采用了水平扩展的架构,可以将数据存储在成百上千台服务器上,并且可以在需要时动态地添加更多的节点。
- 数据局部性:HDFS通过将数据块复制到离数据处理节点近的位置,减少了数据传输的网络开销,提高了数据访问的效率。
- 易于管理:HDFS提供了简单的文件系统命令和Web界面,使得管理员可以轻松地管理和监控文件系统。如图所示。
2. 体系结构
- 主从结构:HDFS采用了主从(Master/Slave)结构模型,一个HDFS集群是由一个NameNode和若干个DataNode组成的。
- NameNode:作为主服务器,管理文件系统的命名空间和客户端对文件的访问操作。
- DataNode:管理存储的数据,执行数据的读写操作。
3. 应用场景
- 存储超大文件:如GB到TB级别的文件。
- 流式数据访问方式:即一次写入、多次读取。
- 运行于商业硬件上:HDFS可运行于普通廉价机器,降低了成本。
通过以上信息,我们可以看到HDFS是一个专为处理大规模数据集而设计的分布式文件系统,具有高度的容错性、吞吐量、扩展性和数据局部性等特点,适用于存储和处理超大规模数据集。
(2)了解分布式计算框架——MapReduce
MapReduce是一个分布式计算框架,主要用于处理和分析大规模数据集。以下是关于MapReduce的详细特点、工作原理和应用场景的清晰归纳:
1. 特点
- 并行处理:MapReduce将任务拆分成多个小任务,并分配给不同的节点进行处理,从而实现并行处理,提高计算效率。
- 容错性:MapReduce具有高度的容错性,当一个节点出现故障时,可以重新分配任务给其他节点进行处理,保证任务的正常执行。
- 易扩展性:通过增加更多的节点,MapReduce可以扩展计算能力,以处理更大规模的数据。
- 简单性:MapReduce的编程模型相对简单,用户只需要实现map和reduce函数就可以完成复杂的数据处理任务。
- 适应性:MapReduce适用于处理大规模数据集的场景,能够高效处理PB级别甚至EB级别的数据。
- 统一性:MapReduce提供了统一的接口和框架,使得不同的应用程序可以共享相同的计算资源和存储资源。
2. 工作原理
MapReduce的工作原理可以概括为以下几个步骤:
- 数据划分:将大规模数据集分成若干个小数据片段(通常称为“split”或“block”)。
- Map阶段:将每个小数据片段传给不同的计算节点。计算节点使用Map函数对每个小数据片段进行处理,将每个数据片段转换成多个键值对。
- Shuffle阶段:将输出的键值对按照键进行排序和分组,以便于后续的Reduce操作。这个过程可能涉及到跨节点的数据传输和合并。
- Reduce阶段:将排序后的键值对传给不同的计算节点。计算节点使用Reduce函数对每个键值对进行处理,将相同键的所有值合并在一起。
- 结果输出:最终输出Reduce函数的结果。这个结果可能是一个文件、一个数据库记录或者其他形式的数据。如图所示。
3. 应用场景
MapReduce的应用场景包括但不限于:
- 大规模数据分析:如数据挖掘、统计分析、图像处理、自然语言处理等。
- 搜索引擎索引构建:搜索引擎公司使用MapReduce来构建和维护庞大的搜索引擎索引。
- 日志处理和分析:大型互联网公司使用MapReduce来处理和分析大量的服务器日志,以了解系统性能、用户行为和安全事件。
- 机器学习:MapReduce用于训练和执行大规模机器学习模型,包括分类、聚类、推荐系统等。
- 社交网络分析:社交媒体和社交网络公司使用MapReduce来分析用户之间的关系、社交图谱和信息传播。
- 生物信息学:生物信息学领域使用MapReduce处理大规模的生物数据,如DNA序列分析、蛋白质结构预测和基因组测序。
总之,MapReduce是一个强大而灵活的分布式计算框架,它通过并行处理、容错性、易扩展性和简单性等特点,为处理和分析大规模数据集提供了有力的支持。在不同的应用场景下,MapReduce都能够有效地帮助组织从数据中获取有价值的见解,支持决策制定和业务优化。
(3)了解集群资源管理器——YARN
1.特点
- 双层调度器:YARN采用了双层调度器的方式,ResourceManager(RM)作为轻量级的中央调度器,仅负责资源分配管理,位于顶层。底层则是各种应用程序的调度器,不同的编程模型组成不同的应用程序调度器ApplicationMaster(AM)。
- 灵活性:YARN允许在Hadoop集群上运行多种不同的分布式计算框架,如MapReduce、Spark等,提供了灵活的资源管理和任务调度机制。
- 高可靠性:YARN通过心跳机制监控NodeManager的状态,确保资源的可用性和任务的正常执行。
2.基本架构
YARN的基本架构包括三个主要组件:ResourceManager(RM)、NodeManager(NM)和ApplicationMaster(AM)。
- ResourceManager(RM)
- 功能:全局资源管理器,负责整个系统的资源管理和分配。
- 组件:
- Scheduler:资源调度器,根据应用程序的资源申请,将容器资源分配给特定的节点使用。常见的资源调度器包括FIFO调度器、Capacity调度器和Fair调度器。
- Application Manager:负责接受job提交请求,为应用程序分配第一个Container以运行ApplicationMaster,并提供失败时重新启动运行着ApplicationMaster的Container的服务。
- 通信方式:RM与NM之间使用心跳包的方式进行通信,NM向RM通告资源的使用状况。
- NodeManager(NM)
- 功能:负责slave节点的资源管理和使用。
- 工作内容:
- 处理来自ResourceManager的命令。
- 处理来自ApplicationMaster的命令。
- 管理容器(Container),接收并处理来自应用程序的容器启动或停止请求。
- ApplicationMaster(AM)
- 功能:负责应用程序(Application)的管理。
- 工作内容:
- 为应用程序申请资源,并分配给内部任务。
- 任务调度、监控与容错。
- 与RM通信,申请和释放资源,并监控应用程序的执行状态。如图所示。
3.主要组件的功能
- ResourceManager(RM):负责整个集群的资源管理和调度,接收来自应用程序的资源请求,并根据可用资源进行分配和调度。
- NodeManager(NM):负责slave节点的资源管理和使用,管理容器,接收并处理来自应用程序的容器启动或停止请求。
- ApplicationMaster(AM):负责应用程序的管理,包括向RM申请资源、管理作业运行的整个流程等。
通过YARN,Hadoop集群能够更有效地利用计算资源,提高了整个系统的吞吐量和响应速度。YARN的引入使得Hadoop生态系统更加灵活和可扩展,能够支持更多的计算框架和应用程序。
5.总结
Hadoop作为大数据处理和分析的基石,具有显著的优势,同时也存在一些劣势。以下是Hadoop的主要优势和劣势的总结:
(1)优势
-
可扩展性:Hadoop能够处理大规模数据集,并且可以通过简单地增加节点来扩展集群的规模和计算能力。这种水平扩展的能力使得Hadoop能够处理PB级甚至EB级的数据。
-
容错性:Hadoop具有出色的容错能力。HDFS通过数据冗余(默认三个副本)来确保数据的可靠性,而MapReduce则通过重新执行失败的任务来确保计算的完成。这使得Hadoop集群在面对硬件故障时能够保持高可用性。
-
灵活性:Hadoop支持多种编程语言,如Java、Scala、Python等,并提供了丰富的API和工具集,使得开发者能够灵活地构建各种类型的大数据应用程序。
-
成本效益:Hadoop可以运行在由普通硬件组成的集群上,这降低了硬件成本。同时,由于其开源特性,Hadoop的部署和维护成本也相对较低。
-
生态系统:Hadoop已经形成了一个庞大的生态系统,包括各种存储、计算、分析和可视化工具。这些工具可以无缝集成到Hadoop中,提供完整的大数据解决方案。
(2)劣势
-
复杂性:Hadoop是一个庞大且复杂的系统,需要深入的理解和专业的技能来正确地配置、管理和优化。对于初学者来说,学习曲线可能较陡。
-
延迟:Hadoop主要适用于批处理场景,这意味着它的响应时间可能较长。对于需要实时或准实时处理的应用场景,Hadoop可能不是最佳选择。
-
资源消耗:Hadoop集群在运行过程中会消耗大量的CPU、内存和磁盘资源。这可能导致在资源受限的环境中难以部署和运行Hadoop。
-
数据安全性:虽然Hadoop提供了数据冗余和容错机制,但在某些情况下,数据的安全性仍然是一个问题。例如,当敏感数据存储在HDFS中时,需要额外的安全措施来保护数据不被未授权访问。
-
版本兼容性:Hadoop的生态系统中有许多组件和工具,这些组件和工具之间的版本兼容性可能是一个问题。在升级Hadoop或相关组件时,需要仔细考虑版本兼容性和数据迁移的问题。
综上所述,Hadoop在大数据处理和分析领域具有显著的优势,但也存在一些劣势。在选择是否使用Hadoop时,需要根据具体的应用场景和需求进行权衡和决策。