Win10 搭建 YOLOv8 运行环境(20240423)

一、环境要求

        1、Python,版本要求>=3.7

        2、PyTorch,版本要求>=1.7。PyTorch 是一个开源的深度学习平台,为人工智能研究提供了一个灵活的、易于使用的工具集。YOLOv8 是基于 PyTorch 框架实现的,所以需要安装 PyTorch。

        3、CUDA和cuDNN(可选),如果要使用 GPU 进行训练的话需要安装。其中 CUDA 是由显卡厂商NVIDIA推出的运算平台与编程模型,它允许程序员利用NVIDIA GPU的并行计算能力,加速各种计算密集型应用程序;而 cuDNN 是 NVIDIA 推出的一个用于深度学习的 GPU 加速库,全称是NVIDIA CUDA 深度神经网络库 。它的主要功能和优势在于提供了一系列针对深度学习的高性能原语,如卷积、池化、归一化等。这些原语经过高度优化,能够充分利用 GPU 的并行计算能力,从而显著加速深度学习的计算过程。

二、环境安装

        为了避免不同项目之间的依赖包产生冲突、相互影响,推荐使用 Anaconda 来管理 Python 环境。Anaconda3 是一个开源的 Python 发行版,旨在简化包管理和部署数据分析环境。Anaconda3 允许用户轻松创建和管理多个独立的 Python 环境,以便在不同的项目中使用不同版本的Python和不同的库;Anaconda3 还集成了一个强大的包管理器,用户可以通过简单的命令行操作来安装、更新和卸载各种Python库,从而方便地管理自己所需的库。所以先从 Anaconda3 的安装开始记录。

        1、安装 Anaconda3

        1.1、下载

                官网地址:Distribution | Anaconda

                阿里云盘:阿里云盘分享

        1.2、 安装

                推荐默认安装,一路 Next,唯一需要注意的就是在第五步时把添加环境变量的选项勾选上,后期自己配置麻烦且容易出现难以排查的错误。

        2、安装 Python 3.11.9

        2.1、在开始菜单中找到并打开 Anaconda 的命令行工具,Anaconda Powershell Prompt 或者 Anaconda Prompt 均可。

               

        2.2、输入命令创建虚拟机环境,在创建虚拟机的同时也会下载安装 Python 3.11.9。

conda create –n yolov8 python=3.11.9

        2.3、激活虚拟机环境。

conda activate yolov8

        2.4、查看当前环境列表,确认虚拟机是否激活(即查看 * 号在哪个虚拟机环境上)。

conda env list

        3、安装 PyTorch

        3.1、在第 2 步中打开的 Anaconda 命令行工具中输入命令安装。

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

         3.2、这个命令是在 PyTorch 官网根据机器的实际情况自动生成的。

        3.3、需要注意的是 CUDA 的选择,这个要根据你有没有 GPU 以及 CUDA 所支持的最高版本来决定。不使用 GPU 的直接点击 CPU 选项,使用 GPU 则需要查询机器所支持的 CUDA 最高版本。可以通过 Windows 自带的 CMD 命令行工具输入命令进行查询。

nvidia-smi

        3.4、 最后可以通过 Anaconda 命令行工具查看已安装依赖来查看是否安装成功。

 4、安装 CUDA、cuDNN

        4.1、下载 CUDA

                官网地址:CUDA Toolkit 12.0 Downloads | NVIDIA Developer

                阿里云盘:阿里云盘不支持 CUDA 文件格式的分享,就没法提供了

        4.2、安装 CUDA

                推荐默认安装,一路"下一步"。如果是自定义安装的话记住自定义安装路径,配置环境变量和安装 cuDNN 会需要用到。

        4.3、可以通过 Windows 自带的 CMD 命令行工具输入命令 查看是否安装成功

nvcc -V
或者
nvcc --version

        

         4.4、下载 CUDA 对应版本的 cuDNN

                官网地址:cuDNN Archive | NVIDIA Developer

                阿里云盘:阿里云盘不支持 cuDNN 文件格式的分享,就没法提供了

         4.5、解压压缩包,复制 bin、include、lib 三个文件夹

         4.6、找到 CUDA 的安装目录,如果是默认安装的话应该在 “C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v安装的版本号”,将复制的三个文件夹粘贴到这个位置

由于篇幅原因,Python 集成开发环境 PyCharm 的安装,以及编写一小段代码调用测试 YOLOv8 提供的 API 将在本地运行测试 YOLOv8(20240423)-CSDN博客记录。 

### 回答1: 要在Windows 10上使用CPU搭建YOLOv5环境,您需要执行以下步骤: 1. 安装Python:首先,您需要安装Python。请从官方网站下载并安装Python 3.8或更高版本。 2. 安装Git:接下来,您需要安装Git。请从官方网站下载并安装Git。 3. 克隆YOLOv5存储库:使用Git Bash或命令提示符,克隆YOLOv5存储库。在命令提示符中,输入以下命令: git clone https://github.com/ultralytics/yolov5.git 4. 安装依赖项:在命令提示符中,导航到YOLOv5存储库的根目录,并运行以下命令: pip install -r requirements.txt 5. 下载预训练权重:下载YOLOv5的预训练权重。在命令提示符中,导航到YOLOv5存储库的根目录,并运行以下命令: python -c "from models.experimental import attempt_load; attempt_load('yolov5s.pt')" 6. 测试YOLOv5:在命令提示符中,导航到YOLOv5存储库的根目录,并运行以下命令: python detect.py --source 0 这将在您的计算机上打开摄像头,并使用YOLOv5检测物体。 希望这些步骤能够帮助您在Windows 10上使用CPU搭建YOLOv5环境。 ### 回答2: YOLOv5是一种深度学习算法,可以用于目标检测和识别。在win10平台上使用CPU来训练和运行YOLOv5需要进行环境搭建,下面是具体步骤: 1. 安装Anaconda Anaconda是一个流行的Python发行版,内置了常用的数据科学工具和库。可以通过在https://www.anaconda.com/products/individual下载适合win10的Anaconda安装包,双击安装后,在开始菜单中找到Anaconda Navigator。 2. 创建虚拟环境 在Anaconda Navigator中打开终端,输入以下命令创建一个新的Python虚拟环境: conda create -n yolo python=3.8 上述代码中的“yolo”是环境的名称,“python=3.8”指明了Python版本。创建完成后,输入以下命令激活虚拟环境: conda activate yolo 3. 安装依赖包 在已激活的yolo环境下,依次安装pytorch、numpy、opencv-python和matplotlib: conda install pytorch torchvision cpuonly -c pytorch pip install numpy pip install opencv-python pip install matplotlib 4. 下载YOLOv5 使用git工具克隆YOLOv5的代码库: git clone https://github.com/ultralytics/yolov5.git 5. 运行YOLOv5 在运行文件夹下打开终端,进入yolov5目录,并使用以下命令运行YOLOv5: python detect.py --weights yolov5s.pt --img 640 --conf 0.4 --source 0 上述代码中,“yolov5s.pt”是模型权重文件,“--img 640”指定了输入图像的大小,“--conf 0.4”是检测置信度的阈值,“--source 0”指定了输入图像源为摄像头。 以上就是在win10平台上使用CPU训练和运行YOLOv5的环境搭建和使用步骤。需要注意的是,由于YOLOv5的推理速度较慢,建议在GPU上进行训练和推理。 ### 回答3: yolov5是目前比较流行的目标检测框架之一,它采用了轻量级的模型架构,同时准确率还比较高,所以它得到了广泛的应用和研究。在windows10平台上,我们可以使用CPU进行yolov5的环境搭建。 首先,我们需要下载和安装anaconda,这是一个流行的Python包管理器和虚拟环境,可以帮助我们管理Python的依赖库。在anaconda的官网上可以下载到旗下的Python版本,例如Anaconda3和Miniconda3,我们可以按照自己的需要选择对应的版本。下载后,我们在本地安装即可。 然后,我们需要创建一个新的Python虚拟环境。在anaconda prompt下,使用以下命令行创建一个新的Python虚拟环境: conda create -n yolov5 python=3.8 这会创建一个新的名为yolov5的虚拟环境,并安装Python 3.8。 接下来,我们需要激活虚拟环境。在anaconda prompt中输入以下命令: conda activate yolov5 这时候,我们就进入了yolov5的虚拟环境中。 然后,我们需要安装必要的Python依赖库。在yolov5虚拟环境中,执行以下命令: pip install -r requirements.txt 这会安装yolov5所需要的所有Python依赖库。 最后,我们就可以在yolov5的虚拟环境中执行我们想要的yolov5程序了。在anaconda prompt下,进入到yolov5的代码目录,例如我们执行以下命令: cd yolov5-master 然后,执行以下命令进行yolov5模型检测: python detect.py --weights yolov5s.pt --source 0 这会使用CPU来执行yolov5模型的图片检测操作,并将结果显示在图形界面中。 总的来说,在windows10平台上使用CPU进行yolov5环境搭建是比较简单的,我们只需要安装anaconda和yolov5所需的Python依赖库即可。当然,如果我们需要使用GPU来加速yolov5的训练和推断,那么我们需要安装对应的显卡驱动和CUDA工具包。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值