问题: 如题所述, 假设我们有 m m m个不同的盒子. 现在我们要从中选 n n n个盒子, 同时我们要求选中的盒子中至少有 k k k个盒子连续分布. 其中, m ≥ n ≥ k m\ge n\ge k m≥n≥k. 求问总共有多少种不同的选法?
解答: 首先, 我们考察 m = 8 , n = 5 , k = 3 m=8, n=5, k=3 m=8,n=5,k=3的例子. 在这个例子中, 我们有8个盒子. 我们分别给它们编号为 1 , 2 , ⋯ , 8 1, 2, \cdots, 8 1,2,⋯,8. 所以, 符合条件的盒子的组合是:
1, 2, 3, 4, 5
1, 2, 3, 4, 6
1, 2, 3, 4, 7
1, 2, 3, 4, 8
1, 2, 3, 5, 6
1, 2, 3, 5, 7
1, 2, 3, 5, 8
1, 2, 3, 6, 7
1, 2, 3, 6, 8
1, 2, 3, 7, 8
2, 3, 4, 5, 6
2, 3, 4, 5, 7
2, 3, 4, 5, 8
2, 3, 4, 6, 7
2, 3, 4, 6, 8
2, 3, 4, 7, 8
3, 4, 5, 6, 7
3, 4, 5, 6, 8
3, 4, 5, 6, 1
3, 4, 5, 7, 8
3, 4, 5, 7, 1
3, 4, 5, 8, 1
⋯ \cdots