组合数学: 从m个盒子中选n个盒子, 选中的盒子中至少有k个盒子连续分布, 总共有多少种不同的选法?

探讨了从m个盒子中选取n个,要求至少有k个连续的选法问题。通过实例分析得出,当连续盒子为1,2,...,k时,剩余选择数为C(m-k,n-k),非起始连续时选择数为(m-k)C(m-k-1,n-k),最终公式为(n-k)!(m-n)!(m-n+1)(m-k)!。" 136702745,7337247,GAN在NLP:数据生成与模型训练实践,"['自然语言处理', '深度学习', '生成对抗网络', '模型训练', '序列生成']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题: 如题所述, 假设我们有 m m m个不同的盒子. 现在我们要从中选 n n n个盒子, 同时我们要求选中的盒子中至少有 k k k个盒子连续分布. 其中, m ≥ n ≥ k m\ge n\ge k mnk. 求问总共有多少种不同的选法?

解答: 首先, 我们考察 m = 8 , n = 5 , k = 3 m=8, n=5, k=3 m=8,n=5,k=3的例子. 在这个例子中, 我们有8个盒子. 我们分别给它们编号为 1 , 2 , ⋯   , 8 1, 2, \cdots, 8 1,2,,8. 所以, 符合条件的盒子的组合是:
1, 2, 3, 4, 5
1, 2, 3, 4, 6
1, 2, 3, 4, 7
1, 2, 3, 4, 8
1, 2, 3, 5, 6
1, 2, 3, 5, 7
1, 2, 3, 5, 8
1, 2, 3, 6, 7
1, 2, 3, 6, 8
1, 2, 3, 7, 8
2, 3, 4, 5, 6
2, 3, 4, 5, 7
2, 3, 4, 5, 8
2, 3, 4, 6, 7
2, 3, 4, 6, 8
2, 3, 4, 7, 8
3, 4, 5, 6, 7
3, 4, 5, 6, 8
3, 4, 5, 6, 1
3, 4, 5, 7, 8
3, 4, 5, 7, 1
3, 4, 5, 8, 1
⋯ \cdots

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值