切诺夫界 (Chernoff bounds)

本文详细介绍了切诺夫界(Chernoff bounds)及其应用,通过马尔科夫不等式和泰勒展开推导出切诺夫界在随机变量上的上尾和下尾概率不等式,并提供了非伯努利分布版本的切诺夫界。证明过程中利用了独立随机向量的性质和特定随机变量的期望公式。
摘要由CSDN通过智能技术生成

以下内容来自此处.
在本文中我们将首先给出若干结论, 再给出切诺夫界及其证明.
X X X为一随机变量, a ∈ R a\in \mathbb{R} aR, 则对于任意 s > 0 s>0 s>0, 由马尔科夫不等式有公式1:
Pr ⁡ ( X ≥ a ) = Pr ⁡ ( e s X ≥ e s a ) ≤ E ( e s X ) e s a \Pr(X\ge a) = \Pr(e^{sX}\ge e^{sa}) \le \frac{E(e^{sX})}{e^{sa}} Pr(Xa)=Pr(esXesa)esaE(esX)
类似的, 对于任意 s > 0 s>0 s>0, 由马尔科夫不等式有公式2:
Pr ⁡ ( X ≤ a ) = Pr ⁡ ( e − s X ≥ e − s a ) ≤ E ( e − s X ) e − s a \Pr(X\le a) = \Pr(e^{-sX} \ge e^{-sa}) \le \frac{E(e^{-sX})}{e^{-sa}} Pr(Xa)=Pr(esXesa)esaE(esX)

M X ( s ) = E ( e s X ) M_X(s) = E(e^{sX}) MX(s)=E(esX), 则由泰勒展开得
M X ( s ) = E ( 1 + s X + 1 2 s 2 X 2 + 1 3 ! s 3 X 3 + ⋯   ) = ∑ i = 0 ∞ 1 i ! s i E ( X i ) M_X(s) = E(1 + sX + \frac{1}{2}s^2X^2 + \frac{1}{3!}s^3X^3 + \cdots) = \sum_{i = 0}^\infty\frac{1}{i!}s^iE(X^i) MX(s)=E(1+sX+21s2X2+3!1s3X3+)=i=0i!1siE(Xi)

引理1. X 1 , ⋯   , X n X_1, \cdots, X_n X1,,Xn为独立随机向量, X = ∑ i = 1 n X i X=\sum_{i=1}^nX_i X=i=1nXi, 则
M X ( s ) = ∏ i = 1 n M X i ( s ) . M_X(s) = \prod_{i=1}^nM_{X_i}(s). MX(s)=i=1nMX

  • 5
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 14
    评论
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值