题目描述
N个城市,标号从0到N-1,M条道路,第K条道路(K从0开始)的长度为2^K,求编号为0的城市到其他城市的最短距离。
输入
第一行两个正整数N(2<=N<=100)M(M<=500),表示有N个城市,M条道路,
接下来M行两个整数,表示相连的两个城市的编号。
输出
N-1行,表示0号城市到其他城市的最短路,如果无法到达,输出-1,数值太大的以MOD 100000 的结果输出。
样例输入
4 3 0 1 1 2 2 0
样例输出
1 3 -1
//用Dijkstra会因为路径取模后大小变化出错
//因为2^k永远大于1+2^1+······+2^(k-1),必须保证下一个路径比前面所有路径加起来都大
//故方法只能用①大整数运算+Dijkstra
//或②并查集建立最小生成树,若后来路径在此树中,直接跳过(如下所示)
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
const int INF = INT32_MAX;
const int MOD = 100000;
struct Node {
int v, w;
Node(int a, int b) :v(a), w(b) {};
};
vector<Node> G[110];
int n, m, d[110], f[110];//d-最短距离 f-并查集
b