NLP教程笔记:词向量

这篇NLP教程笔记详细介绍了词向量的两种典型应用:CBOW和Skip-Gram模型。CBOW利用上下文预测目标词,而Skip-Gram则反过来,用词预测上下文。词向量有助于理解和寻找同义词,通过它们可以揭示词语间的语义关系。
摘要由CSDN通过智能技术生成

NLP教程笔记

TF-IDF

词向量

句向量

Seq2Seq 语言生成模型

CNN的语言模型

语言模型的注意力

Transformer 将注意力发挥到极致

ELMo 一词多义

GPT 单向语言模型

BERT 双向语言模型

NLP模型的多种应用


目录

NLP教程

词向量的几种典型应用:

一、Continuous Bag-of-Word(CBOW)

二、Skip-Gram


词向量的几种典型应用:

  • 把这些对词语理解的向量通过特定方法组合起来,就可以有对某句话的理解了;
  • 可以在向量空间中找寻同义词,因为同义词表达的意思相近,往往在空间中距离也非常近;
  • 词语的距离换算。

一、Continuous Bag-of-Word(CBOW)

原理:

挑一个要预测的词,来学习这个词前后文中词语和预测词的关系

# [Efficient Estimation of Word Representations in Vector Space](https://arxiv.org/pdf/1301.3781.pdf)
from tensorflow import keras
import tensorflow as tf
from utils import process_w2v_data  # this refers to utils.py in my [repo](https://github.com/MorvanZhou/NLP-Tutorial
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值