Cuckoo Hash 布谷鸟哈希

布谷鸟哈希是一种解决哈希冲突的方法,通过使用两个哈希函数来处理碰撞,提高哈希表的利用率并保证O(1)的查询时间。本文介绍了布谷鸟哈希的基本原理、操作流程及其背后的灵感来源——布谷鸟的行为特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 定义: 

一种解决hash冲突的方法,其目的是使用简单的hash 函数来提高hash table的利用率,同时保证O(1)的查询时间。基本思想是使用2个hash函数来处理碰撞,从而每个key都对应到2个位置。

2. 操作:

1. 对key值hash,生成两个hash key值,hashk1和 hashk2, 如果对应的两个位置上有一个为空,那么直接把key插入即可。

2. 否则,任选一个位置,把key值插入,把已经在那个位置的key值踢出来。

3. 被踢出来的key值,需要重新插入,直到没有key被踢出为止。

4. 衍生背景:

Cuckoo中文名叫布谷鸟,这种鸟有一种即狡猾又贪婪的习性,它不肯自己筑巢, 而是把蛋下到别的鸟巢里,而且它的幼鸟又会比别的鸟早出生,布谷幼鸟天生有一种残忍的动作,幼鸟会拼命把未出生的其它鸟蛋挤出窝巢,今后以便独享“养父 母”的食物。借助生物学上这一典故,cuckoo hashing处理碰撞的方法,就是把原来占用位置的这个元素踢走,不过被踢出去的元素还要比鸟蛋幸运,因为它还有一个备用位置可以安置,如果备用位置上 还有人,再把它踢走,如此往复。直到被踢的次数达到一个上限,才确认哈希表已满,并执行rehash操作。

cuckoo_preview

5. 哈希碰撞之前的空间利用率, 1维和一般hash一样为50%, 二维情况看下面例子。一个改进的哈希表如下图所示,每个桶(bucket)有4路槽位(slot)。当哈希函数映射到同一个bucket中,在其它三路slot未被填满 之前,是不会有元素被踢的,这大大缓冲了碰撞的几率。笔者自己的简单实现上测过,采用二维哈希表(4路slot)大约80%的占用率(CMU论文数据据说 达到90%以上,应该是扩大了slot关联数目所致)

cuckoo hashing

### 关于线性代数中三重根对应的特征向量和特征值 #### 三重根的定义及其特性 当一个矩阵 \( A \) 的某个特征多项式的根是一个三次重复的根时,这个根被称为该矩阵的三重特征值。对于任意方阵而言,如果存在一个 k 重特征值,则其最多可以拥有 k 个线性无关的特征向量[^1]。 #### 计算方法概述 为了找到属于给定三重特征值的所有可能的线性独立特征向量,通常采用如下两种主要的方法: - **基础解系法** 对应于特定特征值 λ 的齐次线性方程组 (A - λI)x = 0 可能会有多个自由变量。通过求解此系统的通解来获得一组基底作为这些特征向量的基础解系。这一步骤涉及到高斯消元或其他适当的技术以简化增广矩阵并识别出所有的基本未知数以及它们的关系。 - **幂迭代改进算法(针对某些特殊情况)** 如果已知至少有一个非零向量 v 是对应于三重特征值 λ 的特征向量之一,并且希望寻找其他潜在的相关联但不同的特征向量 w ,那么可以通过构建新的序列 {v, Av, ..., Akv} 并对其进行正交化处理得到额外的候选者。然而这种方法并不总是适用,特别是在面对更复杂的结构或数值稳定性问题的时候[^3]。 #### 实际操作示例 考虑下面的例子说明如何具体执行上述过程: 假设我们有这样一个具体的矩阵 \( A \),它具有形式为 \( p(\lambda)=(\lambda-\mu)^3=det(A-\lambda I)\) 的特征多项式,其中 μ 表示那个唯一的三重特征值。现在要找出所有与之关联的特征向量。 ```python import numpy as np # 假设这是我们的输入矩阵 A 和它的唯一三重特征值 mu A = np.array([[...], [...]]) mu = ... def find_eigenvectors_for_triple_root(matrix, triple_value): """ 寻找对应于指定三重特征值的所有线性独立特征向量 参数: matrix (numpy.ndarray): 输入矩阵 triple_value (float): 已知的三重特征值 返回: list of numpy.ndarray: 所有的线性独立特征向量列表 """ # 构造辅助矩阵 M=(matrix-triple_value*I) identity_matrix = np.eye(len(matrix)) auxiliary_matrix = matrix - triple_value * identity_matrix # 使用SVD分解获取核空间的一组标准正交基 _, singular_values, vh = np.linalg.svd(auxiliary_matrix) rank_of_M = sum(singular_values > 1e-8) # 判断秩的有效维度数量 null_space_basis_vectors = vh.T[:, -(len(vh)-rank_of_M):] return [vector.reshape(-1,) for vector in null_space_basis_vectors] # 调用函数计算结果 resulting_vectors = find_eigenvectors_for_triple_root(A, mu) print(resulting_vectors) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值