LangChain4j 的目标是简化将 LLM 集成到 Java 应用程序中的过程。
开源协议:Apache License 2.0
实现方法
- 统一 API:LLM 提供程序(如 OpenAI 或 Google Vertex AI)和嵌入(矢量)存储(如 Pinecone 或 Milvus)使用专有 API。LangChain4j 提供了一个统一的 API,以避免为每个 API 学习和实现特定的 API。要试验不同的 LLM 或嵌入存储,您可以轻松地在它们之间切换,而无需重写代码。LangChain4j 目前支持 15+ 个流行的 LLMproviders 和 20+ 个 embedding store。
- Comprehensive Toolbox:自 2023 年初以来,社区一直在构建许多 LLM 驱动的应用程序,识别常见的抽象、模式和技术。LangChain4j 已将这些优化为现成的包。我们的工具箱包括从低级提示模板、聊天内存管理和函数调用到 Agent 和 RAG 等高级模式的工具。对于每个抽象,我们提供了一个接口以及多个基于通用技术的即用型实现。无论您是构建聊天机器人还是开发具有从数据摄取到检索的完整管道的 RAG,LangChain4j 都提供了多种选择。
- 大量示例:这些示例展示了如何开始创建各种 LLM 驱动的应用程序,提供灵感并使您能够快速开始构建。
LangChain4j 于 2023 年初在 ChatGPT 的炒作中开始开发。我们注意到许多 Python 和 JavaScript LLM 库和框架缺乏 Java 对应项,我们必须解决这个问题!虽然我们的名字里有“LangChain”,但这个项目融合了来自 LangChain、Haystack、LlamaIndex 和更广泛社区的想法和概念,并融入了我