以mnist为数据集:若原来没有数据集,把DOWNLOAD_MNIST=True。
#coding=utf-8
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision # 数据库模块
import matplotlib.pyplot as plt
from torch.autograd import Variable
torch.manual_seed(1) # reproducible
# Hyper Parameters
EPOCH = 1 # 训练整批数据多少次, 为了节约时间, 我们只训练一次
BATCH_SIZE = 50
LR = 0.001 # 学习率
DOWNLOAD_MNIST = False # 如果你已经下载好了mnist数据就写上 Fasle
# Mnist 手写数字
train_data = torchvision.datasets.MNIST(
root='./mnist/', # 保存或者提取位置
train=True, # this is training data
transform=torchvision.transforms.ToTensor(), # 转换 PIL.Image or numpy.ndarray 成
# torch.FloatTensor (C x H x W), 训练的时候 normalize 成 [0.0, 1.0] 区间
download=DOWNLOAD_MNIST, # 没下载就下载, 下载了就不用再下了
)
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
# 批训练 50samples, 1 channel, 28x28 (50, 1, 28, 28)
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
# 为了节约时间, 我们测试时只测试前2000个
test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1),volatile = True).type(torch.FloatTensor)[:2000]/255. # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
#print test_x
test_y = test_data.test_labels[:2000]
#print 'test_y:',test_y
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Sequential( # input shape (1, 28, 28)
nn.Conv2d(
in_channels=1, # input height
out_channels=16, # n_filters
kernel_size=5, # filter size
stride=1, # filter movement/step
padding=2, # 如果想要 con2d 出来的图片长宽没有变化, padding=(kernel_size-1)/2 当 stride=1
), # output shape (16, 28, 28)
nn.ReLU(), # activation
nn.MaxPool2d(kernel_size=2), # 在 2x2 空间里向下采样, output shape (16, 14, 14)
)
self.conv2 = nn.Sequential( # input shape (16, 14, 14)
nn.Conv2d(16, 32, 5, 1, 2), # output shape (32, 14, 14)
nn.ReLU(), # activation
nn.MaxPool2d(2), # output shape (32, 7, 7)
)
self.out = nn.Linear(32 * 7 * 7, 10) # fully connected layer, output 10 classes
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1) # 展平多维的卷积图成 (batch_size, 32 * 7 * 7) x.size(0) 是x的行数 。 -1就是自适应大小
output = self.out(x)
return output
cnn = CNN()
print cnn # net architecture
optimizer = torch.optim.Adam(cnn.parameters(), lr=LR) # optimize all cnn parameters
loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted
# training and testing
for epoch in range(EPOCH):
for step, (x,y) in enumerate(train_loader): # 分配 batch data, normalize x when iterate train_loader
b_x = Variable(x) #版本老,所以tensor和Variable还没合并
b_y = Variable(y)
output = cnn(b_x) # cnn output
loss = loss_func(output, b_y) # cross entropy loss
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
if step % 50 == 0:
test_output = cnn(test_x)
pred_y = torch.max(test_output, 1)[1].data.squeeze()
accuracy = float((pred_y == test_y).sum()) / float(test_y.size(0))
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
test_output = cnn(test_x[:10])
pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()
print(pred_y, 'prediction number')
print(test_y[:10].numpy(), 'real number')
结果:
CNN (
(conv1): Sequential (
(0): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): ReLU ()
(2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
)
(conv2): Sequential (
(0): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): ReLU ()
(2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
)
(out): Linear (1568 -> 10)
)
('Epoch: ', 0, '| train loss: 2.3145', '| test accuracy: 0.10')
('Epoch: ', 0, '| train loss: 0.5546', '| test accuracy: 0.83')
('Epoch: ', 0, '| train loss: 0.5857', '| test accuracy: 0.89')
('Epoch: ', 0, '| train loss: 0.1874', '| test accuracy: 0.92')
('Epoch: ', 0, '| train loss: 0.0600', '| test accuracy: 0.94')
('Epoch: ', 0, '| train loss: 0.1769', '| test accuracy: 0.95')
('Epoch: ', 0, '| train loss: 0.0996', '| test accuracy: 0.93')
('Epoch: ', 0, '| train loss: 0.2194', '| test accuracy: 0.95')
('Epoch: ', 0, '| train loss: 0.0381', '| test accuracy: 0.96')
('Epoch: ', 0, '| train loss: 0.0545', '| test accuracy: 0.96')
('Epoch: ', 0, '| train loss: 0.0266', '| test accuracy: 0.96')
('Epoch: ', 0, '| train loss: 0.0898', '| test accuracy: 0.96')
('Epoch: ', 0, '| train loss: 0.0973', '| test accuracy: 0.97')
('Epoch: ', 0, '| train loss: 0.3162', '| test accuracy: 0.97')
('Epoch: ', 0, '| train loss: 0.0421', '| test accuracy: 0.97')
('Epoch: ', 0, '| train loss: 0.1074', '| test accuracy: 0.96')
('Epoch: ', 0, '| train loss: 0.0654', '| test accuracy: 0.97')
('Epoch: ', 0, '| train loss: 0.1057', '| test accuracy: 0.97')
('Epoch: ', 0, '| train loss: 0.1333', '| test accuracy: 0.97')
('Epoch: ', 0, '| train loss: 0.0418', '| test accuracy: 0.98')
('Epoch: ', 0, '| train loss: 0.0289', '| test accuracy: 0.97')
('Epoch: ', 0, '| train loss: 0.0140', '| test accuracy: 0.98')
('Epoch: ', 0, '| train loss: 0.0429', '| test accuracy: 0.98')
('Epoch: ', 0, '| train loss: 0.0085', '| test accuracy: 0.98')
(array([7, 2, 1, 0, 4, 1, 4, 9, 5, 9]), 'prediction number')
(array([7, 2, 1, 0, 4, 1, 4, 9, 5, 9]), 'real number')