【项目实训4】手把手教你如何在 mmdetection 中使用自定义数据集(全网最全)

前言

文章性质:实操笔记 📖

代码来源:https://github.com/open-mmlab/mmdetection

主要内容:本文详细记录了如何借助 Tabby 图形界面工具在 AutoDL 远程服务器上配置 mmdetection 所需的项目环境,并且成功使用 mmdetection 框架训练自定义数据集。

冷知识+1:小伙伴们不经意的 点赞 👍🏻 与 收藏 ✨ 可以让作者更有创作动力! 

Prepare

在运行 YOLOv5 代码前,我们要先在 AutoDL 平台租用合适的远程服务器,并借助 Tabby 图形化界面上传代码和配置环境。

借助 Tabby 图形界面在 Autodl 远程服务器上,根据 Github 官网中提供的 mmdetection 流程进行配置:

代码链接:GitHub - open-mmlab/mmdetection: OpenMMLab Detection Toolbox and Benchmark

1、AutoDL 租用远程服务器

在 AutoDL 官网的【算力市场】按照自身需求租用合适的 GPU :

【说明】由于 Github 项目中提到 ultralytics 的安装环境需要 PyTorch 1.8+ ,故按图设置镜像。

2、Tabby 设置 SSH 接口

(1)获取 SSH 登录

在 Tabby 设置 SSH 接口前,需要确保租用的 GPU 处于运行状态,还要获取 SSH 登录所需的指令与密码。

(2)配置 SSH 登录

打开 Tabby 工具的设置栏,在 Profiles & connections 中可以新建 SSH Connection : 

(3)运行 SSH 登录

配置 SSH 接口的 HostPortUsernamePassword 和接口名称后,我们就可以点击运行  ▶  按钮啦!

3、Tabby 上传项目代码

这里我们介绍了两种将项目代码上传到远程服务器的方式,我更推荐第一种方式,因为第二种方式费时更长(可能我的问题)。

(1)手动上传项目代码

将 Github 提供的 mmdetection 相关代码上传至 Tabby 的 /root/autodl-tmp 目录,并借助 unzip 命令进行解压。

(2)Git 克隆项目代码

执行命令:git clone https://github.com/open-mmlab/mmdetection

【说明】可能是网络问题,使用 git clone 命令克隆项目代码时会遇到些许问题,多尝试几次即可。

4、Tabby 配置项目环境

进入远程服务器终端命令窗口后,我们需要先更新 bashrc 中的环境变量。

执行命令:conda init bash && source /root/.bashrc

conda init bash && source /root/.bashrc

【说明】由图可知,我们已经默认进入了 base 环境,我们可以在 base 环境中安装依赖,也可以新建虚拟环境来安装依赖。

(1)新建 conda 环境

执行命令:conda create --name openmmlab python=3.8 -y

conda create --name openmmlab python=3.8 -y

(2)激活 conda 环境

执行命令:conda activate openmmlab

conda activate openmmlab

(3)配置 conda 环境 ①

执行命令:conda install pytorch=1.10.2 torchvision torchaudio cudatoolkit=11.3 -c pytorch

conda install pytorch=1.10.2 torchvision torchaudio cudatoolkit=11.3 -c pytorch

(4)配置 conda 环境 ②

执行命令 1 :pip install -U openmim

pip install -U openmim

执行命令 2 :mim install mmengine

mim install mmengine

执行命令 3 :mim install "mmcv>=2.0.0"

mim install "mmcv>=2.0.0"

执行命令 4 :pip install -v -e .

pip install -v -e .

【提醒】在执行这个命令前,需要先进入 mmdetection 的根目录:cd /root/autodl-tmp/mmdetection 。

QuickStart

执行命令 1 :mim download mmdet --config rtmdet_tiny_8xb32-300e_coco --dest .

mim download mmdet --config rtmdet_tiny_8xb32-300e_coco --dest .

执行命令 2 :python demo/image_demo.py demo/demo.jpg (config-file) --weights (weights-file) --device cpu

python demo/image_demo.py demo/demo.jpg 
    A-quickstart/rtmdet_tiny_8xb32-300e_coco.py 
    --weights A-quickstart/rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth 
    --device cpu

遇到的问题

AssertionError: MMCV==2.2.0 is used but incompatible. Please install mmcv>=2.0.0rc4, <2.2.0.   

解决方法:使用 mim install mmcv==2.1.0 重新安装,最终 mmcv 、mmdet 、mmengine 的版本如图所示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

作者正在煮茶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值