【深度学习】手把手教你使用 PyCharm 在 Auto DL 远程服务器上运行代码

前言

文章性质:实操记录 💻

主要内容:主要记录了如何使用 PyCharm 在 Auto DL 上运行代码。

相关文档:使用 PyCharm 在 Auto DL 远程服务器上运行代码 - 知乎

相关博客:使用 PyCharm 连接远程服务器(AutoDL)训练 YOLOv5 - CSDN博客 

冷知识+1:小伙伴们不经意的 点赞 👍🏻 与 收藏 ✨ 可以让作者更有创作动力! 

目录

前言

Pre:将文件上传至服务器

一、查看 Remote Host 模块

二、配置 PyTorch 虚拟环境

1、打开远程服务器终端命令窗口 

2、更新 bashrc 中的环境变量

3、创建新的虚拟环境(可选) 

4、安装 pytorch 与 torchvision

5、根据 requirements.txt 安装依赖

End:成功在远程服务器上运行代码


Pre:将文件上传至服务器

在上篇博客中,我们成功将 PyCharm 与 Auto DL 远程服务器连接起来了,通常 PyCharm 中的项目文件会自动上传到服务器中,如果没有自动上传的话,可以参考下面截图中的操作,首先右键点击项目的总文件夹,然后点击 Deployment - Upload 。

然后耐心等待项目文件的上传,这个环节等了我四个多小时... இ௰இ

一、查看 Remote Host 模块

将项目文件上传完成后,我们可以在右侧边栏处找到 Remote Host 模块,如果没有的话,可以在 Tools - Deployment - Browse Remote Host 处找到这个模块,并将其添加到右侧边栏,具体操作如下图所示。

在 Remote Host 模块中,选择指定的服务器后,我们可以在之前指定的 Location 目录下找到项目的相关文件。

【回顾】下面这张图是我们当初配置虚拟环境时的截图,可以看到我们将 Location 设置为 /root/.virtualenvs/项目名

二、配置 PyTorch 虚拟环境

 由于我们需要复现或者实现的项目不同,需要配置的虚拟环境也应不同,这里我配置的是 PyTorch 虚拟环境。

1、打开远程服务器终端命令窗口 

在点击 Tools - Start SSH Session 后,选择指定的远程服务器,具体操作如下图所示。

2、更新 bashrc 中的环境变量

进入远程服务器终端命令窗口后,我们先更新 bashrc 中的环境变量,执行下面这个命令:

conda init bash && source /root/.bashrc

【说明】由上图可知,我们已经默认进入了 base 环境,我们可以在 base 环境中安装依赖,也可以新建虚拟环境来安装依赖。

3、创建新的虚拟环境(可选) 

Step1 我们可以通过执行下面这个命令新建虚拟环境:

conda create -n yolo python=3.8

【注意】考虑到我后面要安装的 torch 和 torchvision 的版本,我重新搭建了 python = 3.7 的虚拟环境。大家也应该选择合适的!

Step2 执行下面这个命令,再次更新 bashrc 中的环境变量:

conda init bash && source /root/.bashrc

Step3 执行下面这个命令,激活我们新建的虚拟环境:

conda activate yolo

4、安装 pytorch 与 torchvision

由于我们想要运行的项目源代码要求 torch=1.2.0 ,因此我们使用 PyToch 官方提供的命令进行安装:

pip install torch===1.2.0 torchvision===0.4.0 -f https://download.pytorch.org/whl/torch_stable.html

5、根据 requirements.txt 安装依赖

在根据 requirements.txt 安装依赖之前,要确保我们使用的 Python Interpreter 对应了我们新建的虚拟环境,如下图所示。 

确保使用的虚拟环境无误后,我们再根据提示点击 Install requirements 安装缺少的依赖。 

End:成功在远程服务器上运行代码

当然,在成功运行项目的 train.py 文件前,我还遇到几个问题,例如 tensorboard 和 future 模块的缺失,直接 pip install 即可。 

### 如何在PyCharm社区版中使用AutoDL #### 配置环境 为了使PyCharm社区版能够连接AutoDL并执行深度学习模型训练,需先完成基本的环境设置。这包括但不限于安装必要的Python解释器版本及其依赖库。对于特定于深度学习的任务,可能还需要配置CUDA和cuDNN等工具链来充分利用GPU加速性能[^1]。 #### 远程服务器连接准备 获取用于访问所租赁之AutoDL GPU资源的具体SSH命令至关重要。通常情况下,该命令形式如下所示:`ssh -p {port} root@{hostname}`。这里需要注意端口号(`{port}`)与主机名(`{hostname}`),这些参数会依据个人账户下的具体实例而有所不同[^3]。 #### 设置PyCharm社区版中的远程解释器 尽管官方文档更倾向于指导用户通过专业版来进行此类操作,但实际上,在社区版里同样可以实现这一点。进入Settings/Preferences对话框后导航至Project Interpreter部分;点击右侧齿轮图标选择Add...选项以添加新的解释器路径。此时可以选择SSH Interpreter方式,并按照提示输入之前获得的SSH连接详情以及目标环境中存在的Python可执行文件的位置。这一过程允许本地IDE同远端计算节点之间建立有效的交互通道[^2]。 ```bash # SSH连接示例 ssh -p 38076 root@region-1.autodl.com ``` #### 开始编写与调试代码 一旦成功指定了远程Python解析器之后,则可以在熟悉的开发界面内无缝开展工作——无论是编辑源码还是运行测试案例均不受影响。值得注意的是,当涉及到大型数据集传输或是频繁调用外部API接口时,应当考虑优化网络效率或调整项目结构以便更好地适应云端作业模式。
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

作者正在煮茶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值