【算法设计与分析】分治算法(三)幂乘问题(递归快速幂)

实验目的

1)了解分治策略算法思想及基本原理;
2)掌握使用分治算法求解问题的一般特征;
3)掌握分解、治理的方法;
4)能够针对实际问题,能够正确的分解、治理,设计分治算法;
5)能够正确分析算法的时间复杂度和空间复杂度。

实验内容(要求)

给定实数 a 和自然数 n,求an

算法设计(问题分析、建模、算法描述)

问题分析:
     利用分治法把a的n次方问题拆成两个a的n/2次方相乘,对a的n/2次方拆分,相较于迭代每次乘a循环n次可大大减少算法的时间复杂度。

算法描述:
     对n的奇偶进行分类拆分,最后合并为最终答案。

算法源码

#include<bits/stdc++.h>
#pragma GCC optimize(2)
#define int long long
using namespace std;
const int N = 2e5 + 10;
int a, n;

int solve(int a, int n) 
{
    if(n == 1)
        return a;
    else if(n > 1) {
        if(n % 2 == 0) {
            int ans = solve(a, n / 2);
            return ans * ans;
        } else {
            int ans = solve(a, (n - 1) / 2);
            return ans * ans * a;
        }
    }
}
int32_t main()
{
    cin >> a >> n;

    cout << solve(a, n) << endl;

    return 0;
}

测试数据及运算结果(要求:截图说明算法运行的结果)

测试数据1:
2 5

输出结果:

在这里插入图片描述

测试数据2:
43 23

输出结果:

在这里插入图片描述

算法分析(分析算法的时间复杂度和空间复杂度)

时间复杂度:O(log n)
     分治算法解递归式T(n)=T(n/2)+θ(n)可得时间复杂度为O(log n)级

空间复杂度:O(log n)
     在每一层递归中,需要使用常数级别的额外空间来存储临时变量和递归调用的返回值。递归的深度取决于指数的大小,所以空间复杂度是O(log n)

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑瓜上长蘑菇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值