第一章函数与极限——第三节 函数的极限
*对于没有特殊指明的“总结归纳”,通常指该“总结归纳”的上一张图。
一、函数极限的定义
总结归纳
1.自变量趋于有限值时函数的极限
总结归纳
定义1-函数f(x)当x→x0时的极限
函数f(x)当x→x0时的极限为A的几何解释
例1
例2
例3
例4
例5
例1-例5的方法:ε-δ定义法
左极限与右极限
左极限:x从x0的左侧趋于x0,把 0<|x-x0|<δ 改为 x0-δ<x<x0。
右极限:x从x0的右侧趋于x0,把 0<|x-x0|<δ 改为 x0<x<x0+δ。
极限存在的充分必要条件
例6
2.自变量趋于无穷大时的函数的极限
小节概述
定义2-函数f(x)当x→∞时的极限
函数f(x)当x→x0时的极限为A的几何解释
例7
例7的方法步骤(似ε-δ定义法)
二、函数极限的性质
小节前言
定理1(函数极限的唯一性)
定理2(函数极限的局部有界性)
定理2的证明
定理3(函数极限的局部保号性)
定理3的证明
定理3‘
定理3’的推论
*定理4(函数极限与数列极限的关系)
*定理4的证明
习题1-3
1.


2.



3.



4.


为什么,当 x < 0 时φ(x) = |x|/x = (-x)/x = -1?


*5.




*6.



分清 自变量趋于有限值 和 自变量趋于无穷大 两种情况
*7.


*8.


*9.


*10.


*11.


*12.


参考资料
同济大学数学系. 高等数学 第七版 上册. 高等教育出版社. 2014
同济大学数学系. 高等数学 习题全解指南 第七版 上册. 高等教育出版社. 2014