求极限时什么时候可以在加减式中使用等价无穷小替换?

0、等价无穷小替换的基本原则


又例如:

但用 等价无穷小替换的基本原则 也不一定每题都奏效。

一个特例

一、等价无穷小替换的本质

1.先列举几个常用的等价无穷小替换:

2.泰勒展开定义式

3.让我们看看几个常用等价无穷小的泰勒展开

4.结论

实际上,等价无穷小替换就是取的泰勒展开的主导项。

二、什么情况下的加减式不能使用等价无穷小替换

使用等价无穷小替换后主导项不被抵消。

三、为什么乘除时可以无顾忌地使用等价无穷小量替换?

因为乘除不会消去主导项。

★四、特别重要的一点

参考资料

泰勒公式_百度百科
https://www.zhihu.com/question/49541771
https://zhuanlan.zhihu.com/p/99373470

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑子不好真君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值