《机器学习实战》Logistic回归

本章内容

Sigmoid函数和Logistic回归分类器
最优化理论初步
梯度下降最优算法
数据中的缺失项处理

Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式。 训练分类器时的做法就是寻找最佳拟合参数,使用的是最优化算法。

Logistic 回归的一般过程
(1)收集数据:采用任意方法收集数据。
(2)准备数据:由于需要进行距离计算,因此要求数据类型为数值型。另外,结构化数据格式则最佳。
(3)分析数据: 采用任意方法对数据进行分析。
(4)训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数。
(5)测试算法:一旦训练步骤完成,分类将会很快。
(6)使用算法:首先,我们需要输入一些数据,并将其转换成对应的结构化数值;接着,基于训练好的回归系数就可以对这些数值进行简单的回归计算,判定它们属于哪个类别;在这之后,我们就可以在输出的类别上做一些其他的分析工作。

5.1 基于Logistic回归和Sigmoid函数的分类

Logistic回归
优点:计算代价不高,易于理解和实现。
缺点:容易欠拟合,分类精度可能不高。
适用数据类型:数值型和标称型数据。

Sigmoid函数
在这里插入图片描述

5.2 基于最优化方法的最佳回归系数确定

在这里插入图片描述
上述公式可以写成:
在这里插入图片描述
Logistic回归的目的是寻找一个非线性函数Sigmoid的最佳拟合函数,求解过程可以由最优化算法来完成。最常用有梯度上升算法,有可以简化为随机梯度上升算法。相比之下,两者算法的效果相当,但后者占用更少的计算资源。并且,随机梯度上升算法是一个在线算法,它可以在新数据到来时就完成参数更新,而不需要重新读取整个数据集来进行批处理运算。

训练算法:使用梯度上升找到最佳参数

每个回归系数初始化为1
重复R次:
   计算整个数据集的梯度
   使用alpha×gradient更新回归系数的向量
返回回归系数

代码如下:


from math import *
from numpy import *

# 训练算法:使用梯度上升找到最佳参数
def loadDataSet():
    dataMat = []; labelMat = []
    fr = open('testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split('\t')
        # dataMat.append([float(lineArr[0]),float(lineArr[1])])
        dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat
def sigmoid(inX):
    return 1.0/(1+exp(-inX))
def gradAscent(dataMatIn,classLabels):
    dataMatrix = mat(dataMatIn)         #100*3的矩阵
    labelMat = mat(classLabels).transpose()  # transpose转置后是1*100的矩阵
    m,n = shape(dataMatrix)         #m=100,n=3
    alpha = 0.001
    maxCycles = 500
    weights = ones((n,1))           #权重矩阵是3*1
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)       #100*3矩阵与3*1矩阵相乘=100*1的矩阵
        error = (labelMat - h)
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights

# 分析数据:画出决策边界
# 画出数据集和Logistic回归最佳拟合直线的函数
def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat,labelMat = loadDataSet()        # list
    dataArr = array(dataMat)
    n = shape(dataArr)[0]
    xcord1 = [];ycord1 = []
    xcord2 = [];ycord2 = []
    for i in range(n):
        if int(labelMat[i])==1:
            xcord1.append(dataArr[i,1]);ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1]);ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1,ycord1,s=30,c='red',marker='s')
    ax.scatter(xcord2,ycord2,s=30,c='green')
    x = arange(-3.0,3.0,0.1)
    y = (-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x,y)
    plt.xlabel('X1');plt.ylabel('X2')
    plt.show()

if __name__ == '__main__':
    dataMat,labelMat = loadDataSet()
    weights = gradAscent(dataMat,labelMat)
    print(weights)
    print(plotBestFit(weights.getA()))

在这里插入图片描述
分类结果不错,然而对于这100条数据却需要计算300次乘法。可以对该算法稍作改进,进一步介绍随机梯度上升算法。
训练算法:随机梯度上升

每个回归系数初始化为1
对数据集中每个样本:
    计算该样本的梯度
    使用alpha×gradient更新回归系数的向量
返回回归系数

一个判断优化算法的可靠方法是看它是否收敛,也就是说参数是否达到了稳定值,是否还会不断地变化?
代码如下:

# 随机梯度上升算法,对单个样本不需要进行矩阵计算
def stocGradAscent0(dataMatrix,classLabels):
    m,n = shape(dataMatrix)
    alpha = 0.01
    weights = ones(n)
    for i in range(m):
        h = sigmoid(sum(dataMatrix[i]*weights))
        error = classLabels[i] - h
        weights = weights + alpha * error * dataMatrix[i]
    return weights

# 改进的随机梯度上升算法
def stocGradAscent1(dataMatrix,classLabels,numIter=500):
    m,n = shape(dataMatrix)
    weights = ones(n)
    for j in range(numIter):
        dataIndex = list(range(m))
        for i in range(m):
            alpha = 4/(1.0+j+i)+0.01        #alpha每次迭代时需要调整
            randIndex = int(random.uniform(0,len(dataIndex)))   #随机选取样本
            h = sigmoid(sum(dataMatrix[randIndex]*weights))
            error = classLabels[randIndex] - h
            weights = weights + alpha*error*dataMatrix[randIndex]
            del(dataIndex[randIndex])
    return weights

示例:使用Logistic回归估计马疝病的死亡率
(1)收集数据:给定数据文件.疝气病马数据集
(2)准备数据:用Python解析文本文件并填充缺失值.
(3)分析数据:可视化并观察数据.
(4)训练算法:使用优化算法,找到最佳的系数.
(5)测试算法:为了量化回归的效果,需要观察错误率.根据错误率决定是否退到训练阶段,通过改变迭代的次数和步长等参数来得到更好的回归系数.
(6)使用算法:实现一个简单的命令行程序来收集马的症状并输出预测结果.

当数据中出现缺失值时可采用的处理方法:

使用可用特征的均值来填补缺失值
使用特殊值来填补缺失值,如-1,0等
忽略有缺失值
使用相似样本的均值添补缺失值
使用另外的机器学习算法预测缺失值

代码如下:

# 示例:使用Logistic回归估计马疝病的死亡率
def classifyVector(inX,weights):
    prob = sigmoid(sum(inX*weights))
    if prob > 0.5: return 1.0
    else: return 0.0

def colicTest():
    frTrain = open('horseColicTraining.txt')
    frTest = open('horseColicTest.txt')
    trainingSet = []; trainingLabels = []
    for line in frTrain.readlines():
        currLine = line.strip().split('\t')
        lineArr = []
        for i in range(21):
            lineArr.append(float(currLine[i]))
        trainingSet.append(lineArr)
        trainingLabels.append(float(currLine[21]))
    trainWeights = stocGradAscent1(array(trainingSet),trainingLabels,500)
    errorCount = 0; numTestVec = 0.0
    for line in frTest.readlines():
        numTestVec += 1.0
        currLine = line.strip().split('\t')
        lineArr = []
        for i in range(21):
            lineArr.append(float(currLine[i]))
        if int(classifyVector(array(lineArr),trainWeights))!=int(currLine[21]):
            errorCount += 1
    errorRate = (float(errorCount)/numTestVec)
    print('the error rate of this test is: %f'%errorRate)
    return  errorRate

def multiTest():
    numTests = 10; errorSum = 0.0
    for k in range(numTests):
        errorSum += colicTest()
    print("after %d iterations the average error rate is: %f"
          %(numTests,errorSum/float(numTests)))

10次迭代后的平均错误率为35%.对于有30%的数据缺失的数据集来说结果并不差,还可以继续调整colicTest()中的迭代次数和stocGrandAscent1()中的步长,可以将平均错误率降低到20%左右.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值