【差分】二维差分【含视频演示】

题目

 活动 - AcWing

解释

  • 差分的操作实质是一个前缀和的逆运算,相当于求导和积分的关系
  • 核心操作为给以(x1,y1)为左上角,(x2,y2)为右下角的子矩阵a[i][j]中的所有数加上C
  • 我们构造一个b[i][j],则有
  • a[i][j]=\sum_{x,y=1}^{x=i,y=j}b[x][y]
  •  insert函数的功能是在区间(x1,y1)-(x2,y2)内加上一个常数C
  • 实现的原理可以看视频演示
  • 在输出的时候我们可以由两个方法得到目标矩阵a[i]的值
  • 第一个方法是直接对a[i][j]进行赋值,通过前缀和公式
  • a[i][j] = a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1] + b[i][j];
  • 这里a[i][j]是b[i][j]的前缀和
  • 第二种方法是直接将b[i][j]进行前缀和累加,这里不多进行演示公式的原理
  • 方便理解推荐使用第一种方法

演示视频

代码段

#include<iostream>
using namespace std;
const int N = 1010;
int n, m, q;
int a[N][N], b[N][N];
void insert(int x1,int y1,int x2, int y2,int c)
{
	b[x1][y1] += c;
	b[x2 + 1][y1] -= c;
	b[x1][y2 + 1] -= c;
	b[x2 + 1][y2 + 1] += c;
}
int main()
{
	cin >> n >> m >> q;
	for (int i = 1; i <= n; i++)
		for (int j = 1;j <= m; j++)
			cin >> a[i][j];
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= m; j++)
			insert(i, j, i, j, a[i][j]);
	//构造a[i][j]的差分数组b[i][j],使其满足差分公式
	while (q--)
	{
		int x1, y1, x2, y2, c;
		cin >> x1 >> y1 >> x2 >> y2 >> c;
		insert(x1, y1, x2, y2, c);
		//再将范围内的数组b[i]加上C
	}
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= m; j++)
			a[i][j] = a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1] + b[i][j];
	//第一组公式为求前缀和的通用公式
	//b[i][j] += b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1];
	//第二组公式为将二维数组的前i,j项累加从而求前缀和的通用公式
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= m; j++)
			cout<<a[i][j]<<' ';
		cout << endl;
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nathan Qian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值