题目
活动 - AcWing
解释
- 差分的操作实质是一个前缀和的逆运算,相当于求导和积分的关系
- 核心操作为给以(x1,y1)为左上角,(x2,y2)为右下角的子矩阵a[i][j]中的所有数加上C
- 我们构造一个b[i][j],则有
- insert函数的功能是在区间(x1,y1)-(x2,y2)内加上一个常数C
- 实现的原理可以看视频演示
- 在输出的时候我们可以由两个方法得到目标矩阵a[i]的值
- 第一个方法是直接对a[i][j]进行赋值,通过前缀和公式
- a[i][j] = a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1] + b[i][j];
- 这里a[i][j]是b[i][j]的前缀和
- 第二种方法是直接将b[i][j]进行前缀和累加,这里不多进行演示公式的原理
- 方便理解推荐使用第一种方法
演示视频
代码段
#include<iostream>
using namespace std;
const int N = 1010;
int n, m, q;
int a[N][N], b[N][N];
void insert(int x1,int y1,int x2, int y2,int c)
{
b[x1][y1] += c;
b[x2 + 1][y1] -= c;
b[x1][y2 + 1] -= c;
b[x2 + 1][y2 + 1] += c;
}
int main()
{
cin >> n >> m >> q;
for (int i = 1; i <= n; i++)
for (int j = 1;j <= m; j++)
cin >> a[i][j];
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
insert(i, j, i, j, a[i][j]);
//构造a[i][j]的差分数组b[i][j],使其满足差分公式
while (q--)
{
int x1, y1, x2, y2, c;
cin >> x1 >> y1 >> x2 >> y2 >> c;
insert(x1, y1, x2, y2, c);
//再将范围内的数组b[i]加上C
}
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
a[i][j] = a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1] + b[i][j];
//第一组公式为求前缀和的通用公式
//b[i][j] += b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1];
//第二组公式为将二维数组的前i,j项累加从而求前缀和的通用公式
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
cout<<a[i][j]<<' ';
cout << endl;
}
return 0;
}