LLM.int8()——自适应混合精度量化方法

本文介绍了一种自适应混合精度量化方法LLM.int8,结合Vector-wise量化和混合精度分解,针对大模型如GPT-3和OPT-175B,有效处理权重和特征的高维度以及异常值问题,提高量化精度并降低推理延迟和资源消耗。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Paper地址:https://arxiv.org/abs/2208.07339

GitHub链接:GitHub - TimDettmers/bitsandbytes: 8-bit CUDA functions for PyTorch

随着模型参数规模的增加,大模型(如GPT-3,OPT-175B等NLP稠密大模型)的实际部署应用,需要消耗一定的计算/存储资源,且推理响应延迟存在限制,例如:基于Triton的分布式并行推理,OPT-175B部署在8张A100设备上时,推理延迟约400ms(Batch size=1)。

模型量化是实现模型压缩与推理加速的常用技术手段,但由于大模型本身巨大的参数规模,首先权重矩阵与特征张量的维度都很高,对权重与特征都直接采用Per-tensor量化会造成较大

### 如何在保持分辨率不变的情况下对模型进行训练 为了实现模型训练过程中保持分辨率不变的目标,可以借鉴一些先进的技术手段以及理论支持。以下是具体的方法整理: #### 1. 数据表示形式的一致性 通过将输入数据转换为统一的结构化表达方式来维持分辨率一致性。例如,在视觉领域中,LVM(Large Visual Model)方法会将图像数据转化为 **visual sentences** 的形式[^1]。这种转化不仅能够标准化不同尺寸的输入数据,还能够在后续处理阶段保留原始的空间信息。 #### 2. 自适应混合精度量化策略的应用 采用自适应混合精度量化方法可以帮助减少计算资源消耗的同时不降低输出质量。这种方法的核心在于根据不同部分的重要性动态调整其数值范围内的精确度级别。LLM.int8 提供了一种有效的解决方案——即通过对权重矩阵实施分区域设定量化等级并移除可能引起误差扩大的离群值操作从而达到稳定效果的目的[^2]。 #### 3. 扩展规模与验证有效性 当涉及到大规模数据集上的应用时,则需考虑扩展训练过程中的各个维度参数大小关系及其相互作用规律。这一步骤对于确认所选方案能否成功应用于实际场景至关重要。正如 LVM 中所做的那样,不仅要增加训练样本数量还要同步提升网络内部组件的数量级以便更好地捕捉复杂模式特征,并最终证明这些改变确实有助于增强系统的泛化能力和上下文理解力。 ```python def train_model_with_fixed_resolution(data, model): """ 训练模型同时保持输入分辨率固定 参数: data (list): 输入数据列表 model (object): 待训练的神经网络模型实例 返回: trained_model (object): 完成训练后的模型对象 """ # 将所有图片转为 visual sentences 形式 processed_data = convert_to_visual_sentences(data) # 应用自适应混合精度量化模型上 quantized_model = apply_adaptive_mixed_precision_quantization(model) # 开始正式训练流程 for epoch in range(num_epochs): for batch in create_batches(processed_data): outputs = quantized_model(batch) loss = compute_loss(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() return quantized_model ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值