掷骰子中有趣的概率问题

首先一个熟知的结果是
不定方程 X 1 + X 2 + − − + X n = k X_1+X_2+--+X_n = k X1+X2++Xn=k
满足 1 < = X i < = s 1 < = i < = n 1<=X_i<=s 1<=i<=n 1<=Xi<=s1<=i<=n ( n < = k < = n s n<=k<=ns n<=k<=ns )
的所有正整数解的数目 N ( n , k , s ) = ∑ i = 0 [ k − n s ] ( − 1 ) i C ( n , i ) C ( k − s i − 1 , n − 1 ) N(n,k,s) = \sum_{i=0}^{\left[ \frac{k-n}{s} \right]}{(-1)^iC(n,i)C(k-si-1,n-1)} N(n,k,s)=i=0[skn](1)iC(n,i)C(ksi1,n1)
注意 n = 0 n=0 n=0 N ( n , k , s ) = 1 N(n,k,s) =1 N(n,k,s)=1
给定一个 s s s面的骰子,第i面的点数为 i i i( 1 < = i < = s 1<=i<=s 1<=i<=s)
现随机投掷 n n n次,问点数之和为 k k k,且点数 i i i恰好出现偶数次(包括 0 0 0)的概率是多少?
答案是 P ( s , n , k , i ) = ∑ m = 0 m i n ( [ k i ] , f ( k , n , i ) , n ) ( − 1 ) m C ( n , m ) N ( n − m , k − m i , s ) s n P(s,n,k,i) = \frac{\sum_{m= 0}^{min(\left[ \frac{k}{i} \right],f(k,n,i), n)}{(-1)^m C(n,m)N(n-m,k-mi,s)}}{s^n} P(s,n,k,i)=snm=0min([ik],f(k,n,i),n)(1)mC(n,m)N(nm,kmi,s)
其中 i = 1 i=1 i=1 f ( k , n , i ) = ∞ f(k,n,i) = \infty f(k,n,i)= 否则 f ( k , n , i ) = [ k − n i − 1 ] f(k,n,i) = \left[ \frac{k-n}{i-1} \right] f(k,n,i)=[i1kn]
解析如下
首先 n < = k < = n s n<=k<=ns n<=k<=ns 是显然的,若点数 i i i n n n 次投掷中至少出现 m m m次,由于 n n n 次点数之和为 k k k
i m < = k ⇒ m < = [ k i ] im<=k \Rightarrow m<=\left[ \frac{k}{i} \right] im<=km<=[ik]
另外,剩下 n − m n-m nm 次投掷点数之和显然 > = n − m >= n-m >=nm k − i m > = n − m k-im>=n-m kim>=nm ⇒ m < = [ k − n i − 1 ] ( i > 1 ) \Rightarrow m<=\left[ \frac{k-n}{i-1}\right] ( i>1 ) m<=[i1kn](i>1)
i = 1 i=1 i=1 k − i m > = n − m k-im>=n-m kim>=nm 必成立,该不等式规定的 m m m 可以任意大
综上 m < = m i n ( [ k i ] , f ( k , n , i ) , n ) m<= min(\left[ \frac{k}{i} \right],f(k,n,i),n) m<=min([ik],f(k,n,i),n)
而点数 i i i n n n 次投掷中至少出现 0 0 0次显然是可能得,故 m m m 0 0 0开始求和
0 < = m < = m i n ( [ k i ] , f ( k , n , i ) , n ) 0<=m<= min(\left[ \frac{k}{i} \right],f(k,n,i),n) 0<=m<=min([ik],f(k,n,i),n)
设点数 i i i n n n 次投掷中至少出现 m m m 次,那么从 n n n 次投掷中任选 m m m 次作为点数 i i i 必然出现的轮次,共有 C ( n , m ) C(n,m) C(n,m) 种取法,由于 n n n 次点数之和为 k k k,对于每一种取法剩下 n − m n-m nm 次所有可能得投掷点数的组合是不定方程
X 1 + X 2 + − − + X n − m = k − m i X_{1}+X_{2}+--+X_{n-m} = k-mi X1+X2++Xnm=kmi 满足 1 < = X i < = s 1<=X_i<=s 1<=Xi<=s ( 1 < = i < = n − m 1<=i<=n-m 1<=i<=nm )的所有正整数解向量的个数,为 N ( n − m , k − m i , s ) N(n-m,k-mi,s) N(nm,kmi,s)
根据乘法原理,点数 i i i n n n 次投掷中至少出现 m m m 次所有可能的点数组合数目为 C ( n , m ) N ( n − m , k − m i , s ) = g ( n , m , k , i , s ) C(n,m)N(n-m,k-mi,s) =g(n,m,k,i,s) C(n,m)N(nm,kmi,s)=g(n,m,k,i,s)
点数 i i i n n n 次投掷中至少出现 0 0 0 次所有可能的点数组合数目为 g ( n , 0 , k , i , s ) g(n,0,k,i,s) g(n,0,k,i,s)
g ( n , 0 , k , i , s ) − g ( n , 1 , k , i , s ) = g ( n , 0 , k , i , s ) + ( − 1 ) 1 g ( n , 1 , k , i , s ) g(n,0,k,i,s)-g(n,1,k,i,s) = g(n,0,k,i,s)+(-1)^{1}g(n,1,k,i,s) g(n,0,k,i,s)g(n,1,k,i,s)=g(n,0,k,i,s)+(1)1g(n,1,k,i,s)
是点数 i i i n n n 次投掷中至少出现 0 0 0 次所有可能的点数组合数目和点数 i i i n n n 次投掷中至少出现 1 1 1 次所有可能的点数组合数目只差即为点数 i i i n n n 次投掷中恰好出现 0 0 0 次所有可能的点数组合数目
g ( n , 0 , k , i , s ) + ( − 1 ) 1 g ( n , 1 , k , i , s ) + g ( n , 2 , k , i , s ) = g ( n , 0 , k , i , s ) + ( − 1 ) 1 g ( n , 1 , k , i , s ) + ( − 1 ) 2 g ( n , 2 , k , i , s ) g(n,0,k,i,s)+(-1)^{1}g(n,1,k,i,s)+g(n,2,k,i,s) = g(n,0,k,i,s)+(-1)^{1}g(n,1,k,i,s)+(-1)^{2}g(n,2,k,i,s) g(n,0,k,i,s)+(1)1g(n,1,k,i,s)+g(n,2,k,i,s)=g(n,0,k,i,s)+(1)1g(n,1,k,i,s)+(1)2g(n,2,k,i,s)
为点数 i i i n n n次投掷中恰好出现 0 0 0 次所有可能的点数组合数目和点数 i i i n n n 次投掷中至少出现 2 2 2 次所有可能的点数组合数目之和
g ( n , 0 , k , i , s ) + ( − 1 ) 1 g ( n , 1 , k , i , s ) + ( − 1 ) 2 g ( n , 2 , k , i , s ) + ( − 1 ) 3 g ( n , 3 , k , i , s ) = g ( n , 0 , k , i , s ) + ( − 1 ) 1 g ( n , 1 , k , i , s ) + ( − 1 ) 2 g ( n , 2 , k , i , s ) − g ( n , 3 , k , i , s ) g(n,0,k,i,s)+(-1)^{1}g(n,1,k,i,s)+(-1)^{2}g(n,2,k,i,s)+(-1)^{3}g(n,3,k,i,s) = g(n,0,k,i,s)+(-1)^{1}g(n,1,k,i,s)+(-1)^{2}g(n,2,k,i,s)-g(n,3,k,i,s) g(n,0,k,i,s)+(1)1g(n,1,k,i,s)+(1)2g(n,2,k,i,s)+(1)3g(n,3,k,i,s)=g(n,0,k,i,s)+(1)1g(n,1,k,i,s)+(1)2g(n,2,k,i,s)g(n,3,k,i,s)
为点数 i i i n n n 次投掷中至少出现 2 次所有可能的点数组合数目和点数 i i i n n n 次投掷中至少出现 3 次所有可能的点数组合数目之差(即点数 i i i n n n 次投掷中恰好出现 2 次所有可能的点数组合数目)和点数 i i i n n n 次投掷中恰好出现 0 次所有可能的点数组合数目之和
以此类推
由于点数 i i i n n n 次投掷中至少出现的次数 m m m 最大为 m i n ( [ k i ] , f ( k , n , i ) , n ) = t min(\left[ \frac{k}{i} \right],f(k,n,i), n) = t min([ik],f(k,n,i),n)=t ,故不可能至少出现 t + 1 t+1 t+1
次,即出现的次数 < = t <=t <=t ,所以点数 i i i n n n 次投掷中至少出现 t t t 次的点数组合数目 g ( n , t , k , i , s ) g(n,t,k,i,s) g(n,t,k,i,s) 就是点数 i i i n n n 次投掷中恰好出现 t t t 次的点数组合数目
这样若 t t t为偶数, 求和式 ∑ m = 0 m i n ( [ k i ] , f ( k , n , i ) , n ) ( − 1 ) m C ( n , m ) C ( k − m i − 1 , n − m − 1 ) = ∑ m = 0 m i n ( [ k i ] , f ( k , n , i ) , n ) ( − 1 ) m g ( n , m , k , i , s ) \sum_{m= 0}^{min(\left[ \frac{k}{i} \right],f(k,n,i), n)}{(-1)^m C(n,m)C(k-mi-1,n-m-1)} = \sum_{m= 0}^{min(\left[ \frac{k}{i} \right],f(k,n,i), n)}{(-1)^m g(n,m,k,i,s)} m=0min([ik],f(k,n,i),n)(1)mC(n,m)C(kmi1,nm1)=m=0min([ik],f(k,n,i),n)(1)mg(n,m,k,i,s)
的最后一项加上点数 i i i n n n 次投掷中恰好出现 t t t 次的点数组合数目 g ( n , t , k , i ) g(n,t,k,i) g(n,t,k,i)最终得到点数 i i i n n n 次投掷中恰好出现 0 , 2 , − − − , t 0,2,---, t 0,2,,t 次的点数组合数目,即为点数 i i i 恰好出现偶数次(包括0)的点数组合数目
t t t为奇数,最后一项减去点数 i i i n n n 次投掷中恰好出现 t t t 次的点数组合数目 g ( n , t , k , i ) g(n,t,k,i) g(n,t,k,i),也即最后加上点数 i i i n n n 次投掷中恰好出现 t − 1 t-1 t1 次(当然为偶数)的点数组合数目,最终得到点数 i i i n n n 次投掷中恰好出现 0 , 2 , − − − , t − 1 0,2,---, t-1 0,2,,t1 次的点数组合数目,即为点数 i i i 恰好出现偶数次(包括 0 0 0)的点数组合数目
综上, ∑ m = 0 m i n ( [ k i ] , f ( k , n , i ) , n ) ( − 1 ) m C ( n , m ) N ( n − m , k − m i , s ) \sum_{m= 0}^{min(\left[ \frac{k}{i} \right],f(k,n,i), n)}{(-1)^m C(n,m)N(n-m,k-mi,s)} m=0min([ik],f(k,n,i),n)(1)mC(n,m)N(nm,kmi,s)
即为即为点数 i i i 恰好出现偶数次(包括0)的点数组合数目,故 P ( s , n , k , i ) P(s,n,k,i) P(s,n,k,i) 即为所求概率
类似的我们还可以求出点数 i 恰好出现奇数次的点数组合数目 ∑ m = 1 m i n ( [ k i ] , f ( k , n , i ) , n ) ( − 1 ) m − 1 g ( n , m , k , i , s ) = \sum_{m= 1}^{min(\left[ \frac{k}{i} \right],f(k,n,i), n)}{(-1)^{m-1} g(n,m,k,i,s)} = m=1min([ik],f(k,n,i),n)(1)m1g(n,m,k,i,s)=
∑ m = 1 m i n ( [ k i ] , f ( k , n , i ) , n ) ( − 1 ) m − 1 C ( n , m ) N ( n − m , k − m i , s ) \sum_{m= 1}^{min(\left[ \frac{k}{i} \right],f(k,n,i), n)}{(-1)^{m-1} C(n,m)N(n-m,k-mi,s)} m=1min([ik],f(k,n,i),n)(1)m1C(n,m)N(nm,kmi,s)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值