任意置换可以唯一分解成轮换的乘积的数学证明

本文只证唯一性
S = [ a 1 , a 2 , − − − , a n ] S=[a1,a2,---,an] S=[a1,a2,,an] ( a 1 , a 2 , − − − , a n a1,a2,---,an a1,a2,,an )互不相等
设S 上的任意一个置换 f f f f ( a 1 ) , f ( a 2 ) , − − − , f ( a n ) f(a1),f(a2),---,f(an) f(a1),f(a2),,f(an)
f f f 的任意两个两两不相交的轮换分解为 g 1 , g 2 g1,g2 g1,g2 ,
g 1 , g 2 g1 ,g2 g1,g2 中的轮换按其中各个轮换的首元素从小到大排序为
g 1 i = [ b i 1 , b i 2 , − − − , b i s i ] g1i=[b_{i1},b_{i2},---,b_{isi}] g1i=[bi1,bi2,,bisi] i = 1 , 2 , − − − , m i=1,2,---,m i=1,2,,m
g 2 j = [ c j 1 , c j 2 , − − − , c j q j ] g2j=[c_{j1},c_{j2},---,c_{jqj}] g2j=[cj1,cj2,,cjqj] j = 1 , 2 , − − − , n j=1,2,---,n j=1,2,,n
1 = b 11 < b 21 < − − − < b m 1 1 = b_{11}<b_{21}<---<b_{m1} 1=b11<b21<<bm1
1 = c 11 < c 21 < − − − < c n 1 1 = c_{11}<c_{21}<---<c_{n1} 1=c11<c21<<cn1
我们来证必有 m = n m=n m=n [ b i 1 , b i 2 , − − − , b i s i ] = [ c i 1 , c i 2 , − − − , c i q i ] i = 1 , 2 , − − − , m ( n ) [b_{i1},b_{i2},---,b_{isi}] = [c_{i1},c_{i2},---,c_{iqi}] i = 1,2,---,m(n) [bi1,bi2,,bisi]=[ci1,ci2,,ciqi]i=1,2,,m(n)
设当前考虑的 a i ai ai 1 < = i < = n 1<=i<=n 1<=i<=n 的下标集合为 e k = [ d k 1 , − − − , d k h k ] d k 1 < d k 2 < − − − < d k h k ek=[d_{k1},---,d_{khk}] d_{k1}<d_{k2}<---<d_{khk} ek=[dk1,,dkhk]dk1<dk2<<dkhk
e k ek ek 可以为空
初始时 k = 1 k=1 k=1 e k = e 1 = [ 1 , 2 , 3 , − − − , n ] ek = e1=[1,2,3,---,n] ek=e1=[1,2,3,,n]
k > 1 k>1 k>1 由归纳法假设 g 1 i = g 2 i g1i=g2i g1i=g2i i = 1 , 2 , − − − , k − 1 i=1,2,---,k-1 i=1,2,,k1
e k = [ 1 , 2 , − − − , n ] − ⋃ i = 1 k − 1 g 1 i ek=[1,2,---,n]-\bigcup_{i=1}^{k-1}g1i ek=[1,2,,n]i=1k1g1i
e k ek ek 不为空
考察以 d k 1 dk1 dk1 为首元素的 g 1 g1 g1 中的轮换 g 1 k ′ g1k' g1k (显然它一定存在)不难看出 g 1 k ′ = g 1 k = [ b k 1 , b k 2 , − − − , b k s k ] g1k'=g1k= [b_{k1},b_{k2},---,b_{ksk}] g1k=g1k=[bk1,bk2,,bksk]
同理以 d k 1 dk1 dk1 为首元素的 g 2 g2 g2 中的轮换 g 2 k ′ = g 2 k = [ c k 1 , c k 2 , − − − , c k q k ] g2k'=g2k= [c_{k1},c_{k2},---,c_{kqk}] g2k=g2k=[ck1,ck2,,ckqk]
若存在 i i i 使得 1 < = i < = m i n [ q k , s k ] 1<=i<=min[qk,sk] 1<=i<=min[qk,sk] b k p = c k p b_{kp}=c_{kp} bkp=ckp 1 < = p < = i − 1 1<=p<=i-1 1<=p<=i1 b k i ≠ c k i b_{ki}\ne c_{ki} bki=cki (由于 g 2 k , g 1 k g2k,g1k g2k,g1k 均以 d k 1 dk1 dk1 为首元素,故必有 i > 1 i>1 i>1 )
则轮换 g 1 k , g 2 k g1k,g2k g1k,g2k 满足 f ( a b k i − 1 ) = a b k i ≠ c k i = f ( a c k i − 1 ) f(a_{b_{ki-1}}) =a_{b_{ki}} \ne c_{ki}=f(a_{c_{ki-1}}) f(abki1)=abki=cki=f(acki1)
由于 a b k i − 1 = a c k i − 1 a_{b_{ki-1}}=a_{c_{ki-1}} abki1=acki1 故有 f ( a b k i − 1 ) = f ( a c k i − 1 ) f(a_{b_{ki-1}})=f(a_{c_{ki-1}}) f(abki1)=f(acki1) 矛盾
b k i = c k i b_{ki}=c_{ki} bki=cki 1 < = i < = m i n [ q k , s k ] = r k 1<=i<=min[qk,sk]=rk 1<=i<=min[qk,sk]=rk
s k < q k sk<qk sk<qk 则轮换 g 1 k , g 2 k g1k,g2k g1k,g2k 将使得 f ( a b k s k ) = a b k 1 ≠ a c k r k + 1 = f ( a c k r k ) f(a_{b_{ksk}})=a_{b_{k1}}\ne a_{c_{kr_{k}+1}}=f(a_{c_{krk}}) f(abksk)=abk1=ackrk+1=f(ackrk)
这里不等号是因为 c k r k + 1 ≠ c k 1 = b k 1 c_{kr_{k}+1}\ne c_{k1} = b_{k1} ckrk+1=ck1=bk1 从而 a c k r k + 1 ≠ a b k 1 a_{c_{kr_{k}+1}}\ne a_{b_{k1}} ackrk+1=abk1
由于 r k = m i n [ q k , s k ] = s k rk=min[qk,sk]=sk rk=min[qk,sk]=sk
a c k r k = a c k s k 又 b k r k = c k s k a_{c_{krk}}=a_{c_{ksk}} 又 b_{krk}=c_{ksk} ackrk=ackskbkrk=cksk
从而 a c k r k = a c k s k = a b k r k a_{c_{krk}}=a_{c_{ksk}}=a_{b_{krk}} ackrk=acksk=abkrk
从而 a c k r k = a b k s k 故 f ( a c k r k ) = f ( a b k s k ) a_{c_{krk}}=a_{b_{ksk}} 故 f(a_{c_{krk}})=f(a_{b_{ksk}}) ackrk=abkskf(ackrk)=f(abksk) 矛盾
s k > q k sk>qk sk>qk 情形同理可导出矛盾
综上,我们有 q k = s k qk=sk qk=sk b k i = c k i b_{ki}=c_{ki} bki=cki 1 < = i < = s k = q k 1<=i<=s_{k}=q_{k} 1<=i<=sk=qk 实际即为 g 1 k = g 2 k g1k=g2k g1k=g2k
这样 g 1 i = g 2 i g1i=g2i g1i=g2i i = 1 , 2 , 3 , − − − , k i=1,2,3,---,k i=1,2,3,,k
e k + 1 = [ 1 , 2 , − − − , n ] − ⋃ i = 1 k g 1 i e_{k+1}=[1,2,---,n]-\bigcup_{i=1}^{k}g1i ek+1=[1,2,,n]i=1kg1i
e k + 1 e_{k+1} ek+1 重复上述讨论,显然这一过程中集合 e k e_{k} ek 大小不断减小最终 e k e_{k} ek 会变为空集,此时有
g 1 i = g 2 i g1i=g2i g1i=g2i i = 1 , 2 , 3 , − − − , k ′ i=1,2,3,---,k' i=1,2,3,,k
[ 1 , 2 , − − − , n ] = ⋃ i = 1 k ′ g 1 i = ⋃ i = 1 k ′ g 2 i [1,2,---,n]=\bigcup_{i=1}^{k'}g1i=\bigcup_{i=1}^{k'}g2i [1,2,,n]=i=1kg1i=i=1kg2i
于是 [ 1 , 2 , − − − , n ] = ⋃ i = 1 m g 1 i = ⋃ i = 1 k ′ g 1 i [1,2,---,n]=\bigcup_{i=1}^{m}g1i=\bigcup_{i=1}^{k'}g1i [1,2,,n]=i=1mg1i=i=1kg1i
从而 m = k ′ m=k' m=k (证明不难留做习题)同理可证 n = k ′ n=k' n=k ,从而 k ′ = m = n k'=m=n k=m=n 这样就有
g 1 i = g 2 i g1i=g2i g1i=g2i i = 1 , 2 , 3 , − − − m ( n ) i=1,2,3,---m(n) i=1,2,3,m(n) 证毕

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值