高等数学(第七版)同济大学 习题5-2
1. 试求函数 y = ∫ 0 x s i n t d t 当 x = 0 及 x = π 4 时的导数。 \begin{aligned}&1. \ 试求函数y=\int_{0}^{x}sin\ tdt当x=0及x=\frac{\pi}{4}时的导数。&\end{aligned} 1. 试求函数y=∫0xsin tdt当x=0及x=4π时的导数。
解:
因为 y = ∫ 0 x s i n t d t ,所以, y ′ = s i n x ,当 x = 0 时, y ′ = 0 ,当 x = π 4 时, y ′ = 2 2 。 \begin{aligned} &\ \ 因为y=\int_{0}^{x}sin\ tdt,所以,y'=sin\ x,当x=0时,y'=0,当x=\frac{\pi}{4}时,y'=\frac{\sqrt{2}}{2}。 & \end{aligned} 因为y=∫0xsin tdt,所以,y′=sin x,当x=0时,y′=0,当x=4π时,y′=22。
2. 求由参数表达式 x = ∫ 0 t s i n u d u , y = ∫ 0 t c o s u d u 所确定的函数对 x 的导数 d y d x 。 \begin{aligned}&2. \ 求由参数表达式x=\int_{0}^{t}sin\ udu,y=\int_{0}^{t}cos\ udu所确定的函数对x的导数\frac{dy}{dx}。&\end{aligned} 2. 求由参数表达式x=∫0tsin udu,y=∫0tcos udu所确定的函数对x的导数dxdy。
解:
d y d x = d y d t d x d t = c o s t s i n t = c o t t . \begin{aligned} &\ \ \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{cos\ t}{sin\ t}=cot\ t. & \end{aligned} dxdy=dtdxdtdy=sin tcos t=cot t.
3. 求由 ∫ 0 y e t d t + ∫ 0 x c o s t d t = 0 所确定的隐函数对 x 的导数 d y d x . \begin{aligned}&3. \ 求由\int_{0}^{y}e^tdt+\int_{0}^{x}cos\ tdt=0所确定的隐函数对x的导数\frac{dy}{dx}.&\end{aligned} 3. 求由∫0yetdt+∫0xcos tdt=0所确定的隐函数对x的导数dxdy.
解:
方程两端对 x 求导,得 e y d y d x + c o s x = 0 ,所以, d y d x = − c o s x e y \begin{aligned} &\ \ 方程两端对x求导,得e^y\frac{dy}{dx}+cos\ x=0,所以,\frac{dy}{dx}=-\frac{cos\ x}{e^y} & \end{aligned} 方程两端对x求导,得eydxdy+cos x=0,所以,dxdy=−eycos x
4. 当 x 为何值时,函数 I ( x ) = ∫ 0 x t e − t 2 d t 有极值? \begin{aligned}&4. \ 当x为何值时,函数I(x)=\int_{0}^{x}te^{-t^2}dt有极值?&\end{aligned} 4. 当x为何值时,函数I(x)=∫0xte−t2dt有极值?
解:
因为 I ′ ( x ) = x e − x 2 ,方程 x e − x 2 = 0 的解为 x = 0 ,当 x < 0 时, I ′ ( x ) < 0 ,当 x > 0 时, I ′ ( x ) > 0 , 所以 x = 0 是函数 I ( x ) 唯一的极小值点。 \begin{aligned} &\ \ 因为I'(x)=xe^{-x^2},方程xe^{-x^2}=0的解为x=0,当x \lt 0时,I'(x) \lt 0,当x \gt 0时,I'(x) \gt 0,\\\\ &\ \ 所以x=0是函数I(x)唯一的极小值点。 & \end{aligned} 因为I′(x)=xe−x2,方程xe−x2=0的解为x=0,当x<0时,I′(x)<0,当x>0时,I′(x)>0, 所以x=0是函数I(x)唯一的极小值点。
5. 计算下列各导数: \begin{aligned}&5. \ 计算下列各导数:&\end{aligned} 5. 计算下列各导数:
( 1 ) d d x ∫ 0 x 2 1 + t 2 d t ; ( 2 ) d d x ∫ x 2 x 3 d t 1 + t 4 ; ( 3 ) d d x ∫ s i n x c o s x c o s ( π t 2 ) d t . \begin{aligned} &\ \ (1)\ \ \frac{d}{dx}\int_{0}^{x^2}\sqrt{1+t^2}dt;&\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \frac{d}{dx}\int_{x^2}^{x^3}\frac{dt}{\sqrt{1+t^4}};\\\\ &\ \ (3)\ \ \frac{d}{dx}\int_{sin\ x}^{cos\ x}cos(\pi t^2)dt. & \end{aligned} (1) dxd∫0x21+t2dt; (3) dxd∫sin xcos xcos(πt2)dt. (2) dxd∫x2x31+t4dt;
解:
( 1 ) d d x ∫ 0 x 2 1 + t 2 d t = 2 x 1 + x 4 ( 2 ) d d x ∫ x 2 x 3 d t 1 + t 4 = d d x ( ∫ 0 x 3 d t 1 + t 4 − ∫ 0 x 2 d t 1 + t 4 ) = 3 x 2 1 + x 12 − 2 x 1 + x 8 ( 3 ) d d x ∫ s i n x c o s x c o s ( π t 2 ) d t = d d x ( ∫ 0 c o s x c o s ( π t 2 ) d t − ∫ 0 s i n x c o s ( π t 2 ) d t ) = − s i n x c o s ( π c o s 2 x ) − c o s x c o s ( π s i n 2 x ) = − s i n x c o s ( π − π s i n 2 x ) − c o s x c o s ( π s i n 2 x ) = ( s i n x − c o s x ) c o s ( π s i n 2 x ) \begin{aligned} &\ \ (1)\ \frac{d}{dx}\int_{0}^{x^2}\sqrt{1+t^2}dt=2x\sqrt{1+x^4}\\\\ &\ \ (2)\ \frac{d}{dx}\int_{x^2}^{x^3}\frac{dt}{\sqrt{1+t^4}}=\frac{d}{dx}\left(\int_{0}^{x^3}\frac{dt}{\sqrt{1+t^4}}-\int_{0}^{x^2}\frac{dt}{\sqrt{1+t^4}}\right)=\frac{3x^2}{\sqrt{1+x^{12}}}-\frac{2x}{\sqrt{1+x^8}}\\\\ &\ \ (3)\ \frac{d}{dx}\int_{sin\ x}^{cos\ x}cos(\pi t^2)dt=\frac{d}{dx}\left(\int_{0}^{cos\ x}cos(\pi t^2)dt-\int_{0}^{sin\ x}cos(\pi t^2)dt\right)=-sin\ xcos(\pi cos^2\ x)-cos\ xcos(\pi sin^2\ x)=\\\\ &\ \ \ \ \ \ \ \ \ -sin\ xcos(\pi-\pi sin^2\ x)-cos\ xcos(\pi sin^2\ x)=(sin\ x-cos\ x)cos(\pi sin^2\ x) & \end{aligned} (1) dxd∫0x21+t2dt=2x1+x4 (2) dxd∫x2x31+t4dt=dxd(∫0x31+t4dt−∫0x21+t4dt)=1+x123x2−1+x82x (3) dxd∫sin xcos xcos(πt2)dt=dxd(∫0cos xcos(πt2)dt−∫0sin xcos(πt2)dt)=−sin xcos(πcos2 x)−cos xcos(πsin2 x)= −sin xcos(π−πsin2 x)−cos xcos(πsin2 x)=(sin x−cos x)cos(πsin2 x)
6. 证明 f ( x ) = ∫ 1 x 1 + t 3 d t 在 [ − 1 , + ∞ ) 上是单调增加函数,并求 ( f − 1 ) ′ ( 0 ) . \begin{aligned}&6. \ 证明f(x)=\int_{1}^{x}\sqrt{1+t^3}dt在[-1, \ +\infty)上是单调增加函数,并求(f^{-1})'(0).&\end{aligned} 6. 证明f(x)=∫1x1+t3dt在[−1, +∞)上是单调增加函数,并求(f−1)′(0).
解:
f ( x ) 在 [ − 1 , + ∞ ) 上可导,当 x > − 1 时, f ′ ( x ) = 1 + x 3 > 0 ,所以, f ( x ) 在 [ − 1 , + ∞ ) 上是单调增加函数。 因为 f ( 1 ) = 0 ,所以, ( f − 1 ) ′ ( 0 ) = 1 f ′ ( 1 ) = 2 2 . \begin{aligned} &\ \ f(x)在[-1, \ +\infty)上可导,当x \gt -1时,f'(x)=\sqrt{1+x^3} \gt 0,所以,f(x)在[-1, \ +\infty)上是单调增加函数。\\\\ &\ \ 因为f(1)=0,所以,(f^{-1})'(0)=\frac{1}{f'(1)}=\frac{\sqrt{2}}{2}. & \end{aligned} f(x)在[−1, +∞)上可导,当x>−1时,f′(x)=1+x3>0,所以,f(x)在[−1, +∞)上是单调增加函数。 因为f(1)=0,所以,(f−1)′(0)=f′(1)1=22.
7. 设 f ( x ) 具有三阶连续导数, y = f ( x ) 的图形如图 5 − 8 所示。问下列积分中的哪一个积分值为负? \begin{aligned}&7. \ 设f(x)具有三阶连续导数,y=f(x)的图形如图5-8所示。问下列积分中的哪一个积分值为负?&\end{aligned} 7. 设f(x)具有三阶连续导数,y=f(x)的图形如图5−8所示。问下列积分中的哪一个积分值为负?
(
A
)
∫
−
1
3
f
(
x
)
d
x
(
B
)
∫
−
1
3
f
′
(
x
)
d
x
(
C
)
∫
−
1
3
f
′
′
(
x
)
d
x
(
D
)
∫
−
1
3
f
′
′
′
(
x
)
d
x
\begin{aligned} &\ \ (A)\ \ \int_{-1}^{3}f(x)dx\\\\ &\ \ (B)\ \ \int_{-1}^{3}f'(x)dx\\\\ &\ \ (C)\ \ \int_{-1}^{3}f''(x)dx\\\\ &\ \ (D)\ \ \int_{-1}^{3}f'''(x)dx & \end{aligned}
(A) ∫−13f(x)dx (B) ∫−13f′(x)dx (C) ∫−13f′′(x)dx (D) ∫−13f′′′(x)dx
解:
根据图形可知,在区间 [ − 1 , 3 ] 上 f ( x ) ≥ 0 ,当 x = − 1 或 x = 3 时, f ( x ) = 0 , f ′ ( − 1 ) > 0 , f ′ ′ ( − 1 ) < 0 , f ′ ( 3 ) < 0 , f ′ ′ ( 3 ) > 0 ,所以, ∫ − 1 3 f ( x ) d x > 0 , ∫ − 1 3 f ′ ( x ) d x = f ( 3 ) − f ( − 1 ) = 0 , ∫ − 1 3 f ′ ′ ( x ) d x = f ′ ( 3 ) − f ′ ( − 1 ) < 0 , ∫ − 1 3 f ′ ′ ′ ( x ) d x = f ′ ′ ( 3 ) − f ′ ′ ( − 1 ) > 0 ,选 C . \begin{aligned} &\ \ 根据图形可知,在区间[-1, \ 3]上f(x) \ge 0,当x=-1或x=3时,f(x)=0,f'(-1) \gt 0,f''(-1) \lt 0,\\\\ &\ \ f'(3) \lt 0,f''(3) \gt 0,所以,\int_{-1}^{3}f(x)dx \gt 0,\int_{-1}^{3}f'(x)dx=f(3)-f(-1)=0,\\\\ &\ \ \int_{-1}^{3}f''(x)dx=f'(3)-f'(-1) \lt 0,\int_{-1}^{3}f'''(x)dx=f''(3)-f''(-1) \gt 0,选C. & \end{aligned} 根据图形可知,在区间[−1, 3]上f(x)≥0,当x=−1或x=3时,f(x)=0,f′(−1)>0,f′′(−1)<0, f′(3)<0,f′′(3)>0,所以,∫−13f(x)dx>0,∫−13f′(x)dx=f(3)−f(−1)=0, ∫−13f′′(x)dx=f′(3)−f′(−1)<0,∫−13f′′′(x)dx=f′′(3)−f′′(−1)>0,选C.
8. 计算下列各定积分: \begin{aligned}&8. \ 计算下列各定积分:&\end{aligned} 8. 计算下列各定积分:
( 1 ) ∫ 0 a ( 3 x 2 − x + 1 ) d x ; ( 2 ) ∫ 1 2 ( x 2 + 1 x 4 ) d x ; ( 3 ) ∫ 4 9 x ( 1 + x ) d x ; ( 4 ) ∫ 1 3 3 d x 1 + x 2 ; ( 5 ) ∫ − 1 2 1 2 d x 1 − x 2 ; ( 6 ) ∫ 0 3 a d x a 2 + x 2 ; ( 7 ) ∫ 0 1 d x 4 − x 2 ; ( 8 ) ∫ − 1 0 3 x 4 + 3 x 2 + 1 x 2 + 1 d x ; ( 9 ) ∫ − e − 1 − 2 d x 1 + x ; ( 10 ) ∫ 0 π 4 t a n 2 θ d θ ; ( 11 ) ∫ 0 2 π ∣ s i n x ∣ d x ; ( 12 ) ∫ 0 2 f ( x ) d x ,其中 f ( x ) = { x + 1 , x ≤ 1 , 1 2 x 2 , x > 1. \begin{aligned} &\ \ (1)\ \ \int_{0}^{a}(3x^2-x+1)dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \int_{1}^{2}\left(x^2+\frac{1}{x^4}\right)dx;\\\\ &\ \ (3)\ \ \int_{4}^{9}\sqrt{x}(1+\sqrt{x})dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}}\frac{dx}{1+x^2};\\\\ &\ \ (5)\ \ \int_{-\frac{1}{2}}^{\frac{1}{2}}\frac{dx}{\sqrt{1-x^2}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)\ \ \int_{0}^{\sqrt{3}a}\frac{dx}{a^2+x^2};\\\\ &\ \ (7)\ \ \int_{0}^{1}\frac{dx}{\sqrt{4-x^2}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (8)\ \ \int_{-1}^{0}\frac{3x^4+3x^2+1}{x^2+1}dx;\\\\ &\ \ (9)\ \ \int_{-e-1}^{-2}\frac{dx}{1+x};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (10)\ \ \int_{0}^{\frac{\pi}{4}}tan^2\ \theta d\theta;\\\\ &\ \ (11)\ \ \int_{0}^{2\pi}|sin\ x|dx;\\\\ &\ \ (12)\ \ \int_{0}^{2}f(x)dx,其中f(x)=\begin{cases}x+1,x \le 1,\\\\\frac{1}{2}x^2,\ \ \ x \gt 1.\end{cases} & \end{aligned} (1) ∫0a(3x2−x+1)dx; (2) ∫12(x2+x41)dx; (3) ∫49x(1+x)dx; (4) ∫3131+x2dx; (5) ∫−21211−x2dx; (6) ∫03aa2+x2dx; (7) ∫014−x2dx; (8) ∫−10x2+13x4+3x2+1dx; (9) ∫−e−1−21+xdx; (10) ∫04πtan2 θdθ; (11) ∫02π∣sin x∣dx; (12) ∫02f(x)dx,其中f(x)=⎩ ⎨ ⎧x+1,x≤1,21x2, x>1.
解:
( 1 ) ∫ 0 a ( 3 x 2 − x + 1 ) d x = [ x 3 − 1 2 x 2 + x ] 0 a = a 3 − 1 2 a 2 + a ( 2 ) ∫ 1 2 ( x 2 + 1 x 4 ) d x = [ 1 3 x 3 − 1 3 x 3 ] 1 2 = 21 8 ( 3 ) ∫ 4 9 x ( 1 + x ) d x = [ 2 3 x 3 2 + 1 2 x 2 ] 4 9 = 271 6 ( 4 ) ∫ 1 3 3 d x 1 + x 2 = [ a r c t a n x ] 1 3 3 = π 6 ( 5 ) ∫ − 1 2 1 2 d x 1 − x 2 = [ a r c s i n x ] − 1 2 1 2 = π 3 ( 6 ) ∫ 0 3 a d x a 2 + x 2 = [ 1 a a r c t a n x a ] 0 3 a = π 3 a ( 7 ) ∫ 0 1 d x 4 − x 2 = [ a r c s i n x 2 ] 0 1 = π 6 ( 8 ) ∫ − 1 0 3 x 4 + 3 x 2 + 1 x 2 + 1 d x = ∫ − 1 0 ( 3 x 2 + 1 x 2 + 1 ) d x = [ x 3 + a r c t a n x ] − 1 0 = 1 + π 4 ( 9 ) ∫ − e − 1 − 2 d x 1 + x = [ l n ∣ 1 + x ∣ ] − e − 1 − 2 = − 1 ( 10 ) ∫ 0 π 4 t a n 2 θ d θ = ∫ 0 π 4 ( s e c 2 θ − 1 ) d θ = [ t a n θ − θ ] 0 π 4 = 1 − π 4 ( 11 ) ∫ 0 2 π ∣ s i n x ∣ d x = ∫ 0 π s i n x d x + ∫ π 2 π ( − s i n x ) d x = [ − c o s x ] 0 π + [ c o s x ] π 2 π = 4 ( 12 ) ∫ 0 2 f ( x ) d x = ∫ 0 1 ( x + 1 ) d x + ∫ 1 2 1 2 x 2 d x = [ 1 2 x 2 + x ] 0 1 + [ 1 6 x 3 ] 1 2 = 8 3 \begin{aligned} &\ \ (1)\ \int_{0}^{a}(3x^2-x+1)dx=\left[x^3-\frac{1}{2}x^2+x\right]_{0}^{a}=a^3-\frac{1}{2}a^2+a\\\\ &\ \ (2)\ \int_{1}^{2}\left(x^2+\frac{1}{x^4}\right)dx=\left[\frac{1}{3}x^3-\frac{1}{3x^3}\right]_{1}^{2}=\frac{21}{8}\\\\ &\ \ (3)\ \int_{4}^{9}\sqrt{x}(1+\sqrt{x})dx=\left[\frac{2}{3}x^{\frac{3}{2}}+\frac{1}{2}x^2\right]_{4}^{9}=\frac{271}{6}\\\\ &\ \ (4)\ \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}}\frac{dx}{1+x^2}=[arctan\ x]_{\frac{1}{\sqrt{3}}}^{\sqrt{3}}=\frac{\pi}{6}\\\\ &\ \ (5)\ \int_{-\frac{1}{2}}^{\frac{1}{2}}\frac{dx}{\sqrt{1-x^2}}=[arcsin\ x]_{-\frac{1}{2}}^{\frac{1}{2}}=\frac{\pi}{3}\\\\ &\ \ (6)\ \int_{0}^{\sqrt{3}a}\frac{dx}{a^2+x^2}=\left[\frac{1}{a}arctan\ \frac{x}{a}\right]_{0}^{\sqrt{3}a}=\frac{\pi}{3a}\\\\ &\ \ (7)\ \int_{0}^{1}\frac{dx}{\sqrt{4-x^2}}=\left[arcsin\ \frac{x}{2}\right]_{0}^{1}=\frac{\pi}{6}\\\\ &\ \ (8)\ \int_{-1}^{0}\frac{3x^4+3x^2+1}{x^2+1}dx=\int_{-1}^{0}\left(3x^2+\frac{1}{x^2+1}\right)dx=[x^3+arctan\ x]_{-1}^{0}=1+\frac{\pi}{4}\\\\ &\ \ (9)\ \int_{-e-1}^{-2}\frac{dx}{1+x}=[ln|1+x|]_{-e-1}^{-2}=-1\\\\ &\ \ (10)\ \int_{0}^{\frac{\pi}{4}}tan^2\ \theta d\theta=\int_{0}^{\frac{\pi}{4}}(sec^2\ \theta-1)d\theta=[tan\ \theta-\theta]_{0}^{\frac{\pi}{4}}=1-\frac{\pi}{4}\\\\ &\ \ (11)\ \int_{0}^{2\pi}|sin\ x|dx=\int_{0}^{\pi}sin\ xdx+\int_{\pi}^{2\pi}(-sin\ x)dx=[-cos\ x]_{0}^{\pi}+[cos\ x]_{\pi}^{2\pi}=4\\\\ &\ \ (12)\ \int_{0}^{2}f(x)dx=\int_{0}^{1}(x+1)dx+\int_{1}^{2}\frac{1}{2}x^2dx=\left[\frac{1}{2}x^2+x\right]_{0}^{1}+\left[\frac{1}{6}x^3\right]_{1}^{2}=\frac{8}{3} & \end{aligned} (1) ∫0a(3x2−x+1)dx=[x3−21x2+x]0a=a3−21a2+a (2) ∫12(x2+x41)dx=[31x3−3x31]12=821 (3) ∫49x(1+x)dx=[32x23+21x2]49=6271 (4) ∫3131+x2dx=[arctan x]313=6π (5) ∫−21211−x2dx=[arcsin x]−2121=3π (6) ∫03aa2+x2dx=[a1arctan ax]03a=3aπ (7) ∫014−x2dx=[arcsin 2x]01=6π (8) ∫−10x2+13x4+3x2+1dx=∫−10(3x2+x2+11)dx=[x3+arctan x]−10=1+4π (9) ∫−e−1−21+xdx=[ln∣1+x∣]−e−1−2=−1 (10) ∫04πtan2 θdθ=∫04π(sec2 θ−1)dθ=[tan θ−θ]04π=1−4π (11) ∫02π∣sin x∣dx=∫0πsin xdx+∫π2π(−sin x)dx=[−cos x]0π+[cos x]π2π=4 (12) ∫02f(x)dx=∫01(x+1)dx+∫1221x2dx=[21x2+x]01+[61x3]12=38
9. 设 k ∈ N + . 试证下列各题: \begin{aligned}&9. \ 设k \in N_{+}.试证下列各题:&\end{aligned} 9. 设k∈N+.试证下列各题:
( 1 ) ∫ − π π c o s k x d x = 0 ; ( 2 ) ∫ − π π s i n k x d x = 0 ; ( 3 ) ∫ − π π c o s 2 k x d x = π ; ( 4 ) ∫ − π π s i n 2 k x d x = π ; \begin{aligned} &\ \ (1)\ \ \int_{-\pi}^{\pi}cos\ kxdx=0;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \int_{-\pi}^{\pi}sin\ kxdx=0;\\\\ &\ \ (3)\ \ \int_{-\pi}^{\pi}cos^2\ kxdx=\pi;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \int_{-\pi}^{\pi}sin^2\ kxdx=\pi; & \end{aligned} (1) ∫−ππcos kxdx=0; (2) ∫−ππsin kxdx=0; (3) ∫−ππcos2 kxdx=π; (4) ∫−ππsin2 kxdx=π;
解:
( 1 ) ∫ − π π c o s k x d x = [ 1 k s i n k x ] − π π = 0 ( 2 ) ∫ − π π s i n k x d x = [ − 1 k c o s k x ] − π π = 0 ( 3 ) ∫ − π π c o s 2 k x d x = 1 2 ∫ − π π ( 1 + c o s 2 k x ) d x = 1 2 ∫ − π π d x + 1 2 ∫ − π π c o s 2 k x d x = π ( 4 ) ∫ − π π s i n 2 k x d x = 1 2 ∫ − π π ( 1 − c o s 2 k x ) d x = 1 2 ∫ − π π d x − 1 2 ∫ − π π c o s 2 k x d x = π \begin{aligned} &\ \ (1)\ \int_{-\pi}^{\pi}cos\ kxdx=\left[\frac{1}{k}sin\ kx\right]_{-\pi}^{\pi}=0\\\\ &\ \ (2)\ \int_{-\pi}^{\pi}sin\ kxdx=\left[-\frac{1}{k}cos\ kx\right]_{-\pi}^{\pi}=0\\\\ &\ \ (3)\ \int_{-\pi}^{\pi}cos^2\ kxdx=\frac{1}{2}\int_{-\pi}^{\pi}(1+cos\ 2kx)dx=\frac{1}{2}\int_{-\pi}^{\pi}dx+\frac{1}{2}\int_{-\pi}^{\pi}cos\ 2kxdx=\pi\\\\ &\ \ (4)\ \int_{-\pi}^{\pi}sin^2\ kxdx=\frac{1}{2}\int_{-\pi}^{\pi}(1-cos\ 2kx)dx=\frac{1}{2}\int_{-\pi}^{\pi}dx-\frac{1}{2}\int_{-\pi}^{\pi}cos\ 2kxdx=\pi & \end{aligned} (1) ∫−ππcos kxdx=[k1sin kx]−ππ=0 (2) ∫−ππsin kxdx=[−k1cos kx]−ππ=0 (3) ∫−ππcos2 kxdx=21∫−ππ(1+cos 2kx)dx=21∫−ππdx+21∫−ππcos 2kxdx=π (4) ∫−ππsin2 kxdx=21∫−ππ(1−cos 2kx)dx=21∫−ππdx−21∫−ππcos 2kxdx=π
10. 设 k 、 l ∈ N + ,且 k ≠ l . 证明: \begin{aligned}&10. \ 设k、l \in N_{+},且k \neq l.证明:&\end{aligned} 10. 设k、l∈N+,且k=l.证明:
( 1 ) ∫ − π π c o s k x s i n l x d x = 0 ; ( 2 ) ∫ − π π c o s k x c o s l x d x = 0 ; ( 3 ) ∫ − π π s i n k x s i n l x d x = 0. \begin{aligned} &\ \ (1)\ \ \int_{-\pi}^{\pi}cos\ kxsin\ lxdx=0;\ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \int_{-\pi}^{\pi}cos\ kxcos\ lxdx=0;\\\\ &\ \ (3)\ \ \int_{-\pi}^{\pi}sin\ kxsin\ lxdx=0. & \end{aligned} (1) ∫−ππcos kxsin lxdx=0; (2) ∫−ππcos kxcos lxdx=0; (3) ∫−ππsin kxsin lxdx=0.
解:
( 1 ) ∫ − π π c o s k x s i n l x d x = 1 2 ∫ − π π [ s i n ( k + l ) x − s i n ( k − l ) x ] d x = 1 2 ∫ − π π s i n ( k + l ) x d x − 1 2 ∫ − π π s i n ( k − l ) x d x , 根据上题结果可得, 1 2 ∫ − π π s i n ( k + l ) x d x − 1 2 ∫ − π π s i n ( k − l ) x d x = 0 ( 2 ) ∫ − π π c o s k x c o s l x d x = 1 2 ∫ − π π [ c o s ( k + l ) x + c o s ( k − l ) x ] d x = 1 2 ∫ − π π c o s ( k + l ) x d x + 1 2 ∫ − π π c o s ( k − l ) x d x , 根据上题结果可得, 1 2 ∫ − π π c o s ( k + l ) x d x + 1 2 ∫ − π π c o s ( k − l ) x d x = 0 ( 3 ) ∫ − π π s i n k x s i n l x d x = − 1 2 ∫ − π π [ c o s ( k + l ) x − c o s ( k − l ) x ] d x = − 1 2 ∫ − π π c o s ( k + l ) x d x + 1 2 ∫ − π π c o s ( k − l ) x d x , 根据上题结果可得, − 1 2 ∫ − π π c o s ( k + l ) x d x + 1 2 ∫ − π π c o s ( k − l ) x d x = 0 \begin{aligned} &\ \ (1)\ \int_{-\pi}^{\pi}cos\ kxsin\ lxdx=\frac{1}{2}\int_{-\pi}^{\pi}[sin(k+l)x-sin(k-l)x]dx=\frac{1}{2}\int_{-\pi}^{\pi}sin(k+l)xdx-\frac{1}{2}\int_{-\pi}^{\pi}sin(k-l)xdx,\\\\ &\ \ \ \ \ \ \ \ 根据上题结果可得,\frac{1}{2}\int_{-\pi}^{\pi}sin(k+l)xdx-\frac{1}{2}\int_{-\pi}^{\pi}sin(k-l)xdx=0\\\\ &\ \ (2)\ \int_{-\pi}^{\pi}cos\ kxcos\ lxdx=\frac{1}{2}\int_{-\pi}^{\pi}[cos(k+l)x+cos(k-l)x]dx=\frac{1}{2}\int_{-\pi}^{\pi}cos(k+l)xdx+\frac{1}{2}\int_{-\pi}^{\pi}cos(k-l)xdx,\\\\ &\ \ \ \ \ \ \ \ \ 根据上题结果可得,\frac{1}{2}\int_{-\pi}^{\pi}cos(k+l)xdx+\frac{1}{2}\int_{-\pi}^{\pi}cos(k-l)xdx=0\\\\ &\ \ (3)\ \int_{-\pi}^{\pi}sin\ kxsin\ lxdx=-\frac{1}{2}\int_{-\pi}^{\pi}[cos(k+l)x-cos(k-l)x]dx=-\frac{1}{2}\int_{-\pi}^{\pi}cos(k+l)xdx+\frac{1}{2}\int_{-\pi}^{\pi}cos(k-l)xdx,\\\\ &\ \ \ \ \ \ \ \ \ 根据上题结果可得,-\frac{1}{2}\int_{-\pi}^{\pi}cos(k+l)xdx+\frac{1}{2}\int_{-\pi}^{\pi}cos(k-l)xdx=0 & \end{aligned} (1) ∫−ππcos kxsin lxdx=21∫−ππ[sin(k+l)x−sin(k−l)x]dx=21∫−ππsin(k+l)xdx−21∫−ππsin(k−l)xdx, 根据上题结果可得,21∫−ππsin(k+l)xdx−21∫−ππsin(k−l)xdx=0 (2) ∫−ππcos kxcos lxdx=21∫−ππ[cos(k+l)x+cos(k−l)x]dx=21∫−ππcos(k+l)xdx+21∫−ππcos(k−l)xdx, 根据上题结果可得,21∫−ππcos(k+l)xdx+21∫−ππcos(k−l)xdx=0 (3) ∫−ππsin kxsin lxdx=−21∫−ππ[cos(k+l)x−cos(k−l)x]dx=−21∫−ππcos(k+l)xdx+21∫−ππcos(k−l)xdx, 根据上题结果可得,−21∫−ππcos(k+l)xdx+21∫−ππcos(k−l)xdx=0
11. 求下列极限: \begin{aligned}&11. \ 求下列极限:&\end{aligned} 11. 求下列极限:
( 1 ) lim x → 0 ∫ 0 x c o s t 2 d t x ; ( 2 ) lim x → 0 ( ∫ 0 x e t 2 d t ) 2 ∫ 0 x t e 2 t 2 d t \begin{aligned} &\ \ (1)\ \ \lim_{x \rightarrow 0}\frac{\int_{0}^{x}cos\ t^2dt}{x};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \lim_{x \rightarrow 0}\frac{\left(\int_{0}^{x}e^{t^2}dt\right)^2}{\int_{0}^{x}te^{2t^2}dt} & \end{aligned} (1) x→0limx∫0xcos t2dt; (2) x→0lim∫0xte2t2dt(∫0xet2dt)2
解:
( 1 ) lim x → 0 ∫ 0 x c o s t 2 d t x = lim x → 0 c o s x 2 1 = 1 ( 2 ) lim x → 0 ( ∫ 0 x e t 2 d t ) 2 ∫ 0 x t e 2 t 2 d t = lim x → 0 2 e x 2 ∫ 0 x e t 2 d t x e 2 x 2 = lim x → 0 2 ∫ 0 x e t 2 d t x = lim x → 0 2 e x 2 1 = 2 \begin{aligned} &\ \ (1)\ \lim_{x \rightarrow 0}\frac{\int_{0}^{x}cos\ t^2dt}{x}=\lim_{x \rightarrow 0}\frac{cos\ x^2}{1}=1\\\\ &\ \ (2)\ \lim_{x \rightarrow 0}\frac{\left(\int_{0}^{x}e^{t^2}dt\right)^2}{\int_{0}^{x}te^{2t^2}dt}=\lim_{x \rightarrow 0}\frac{2e^{x^2}\int_{0}^{x}e^{t^2}dt}{xe^{2x^2}}=\lim_{x \rightarrow 0}\frac{2\int_{0}^{x}e^{t^2}dt}{x}=\lim_{x \rightarrow 0}\frac{2e^{x^2}}{1}=2 & \end{aligned} (1) x→0limx∫0xcos t2dt=x→0lim1cos x2=1 (2) x→0lim∫0xte2t2dt(∫0xet2dt)2=x→0limxe2x22ex2∫0xet2dt=x→0limx2∫0xet2dt=x→0lim12ex2=2
12. 设 f ( x ) = { x 2 , x ∈ [ 0 , 1 ) , x , x ∈ [ 1 , 2 ] . 求 Φ ( x ) = ∫ 0 x f ( t ) d t 在 [ 0 , 2 ] 上的表达式,并讨论 Φ ( x ) 在 ( 0 , 2 ) 内的连续性 . \begin{aligned}&12. \ 设f(x)=\begin{cases}x^2,x \in [0, \ 1),\\\\x,\ \ x \in [1, \ 2].\end{cases}求\Phi(x)=\int_{0}^{x}f(t)dt在[0, \ 2]上的表达式,并讨论\Phi(x)在(0, \ 2)内的连续性.&\end{aligned} 12. 设f(x)=⎩ ⎨ ⎧x2,x∈[0, 1),x, x∈[1, 2].求Φ(x)=∫0xf(t)dt在[0, 2]上的表达式,并讨论Φ(x)在(0, 2)内的连续性.
解:
当 x ∈ [ 0 , 1 ) 时, Φ ( x ) = ∫ 0 x t 2 d t = 1 3 x 3 ,当 x ∈ [ 1 , 2 ] 时, Φ ( x ) = ∫ 0 1 t 2 d t + ∫ 1 x t d t = 1 2 x 2 − 1 6 , 即 Φ ( x ) = { 1 3 x 3 , x ∈ [ 0 , 1 ) , 1 2 x 2 − 1 6 , x ∈ [ 1 , 2 ] . ,因为 lim x → 1 − Φ ( x ) = lim x → 1 − 1 3 x 3 = 1 3 , lim x → 1 + Φ ( x ) = lim x → 1 + ( 1 2 x 2 − 1 6 ) = 1 3 , 且 Φ ( 1 ) = 1 3 ,所以 Φ ( x ) 在 x = 1 处连续,也在其他点处连续,因此, Φ ( x ) 在 ( 0 , 2 ) 内连续。 \begin{aligned} &\ \ 当x \in [0, \ 1)时,\Phi(x)=\int_{0}^{x}t^2dt=\frac{1}{3}x^3,当x \in [1, \ 2]时,\Phi(x)=\int_{0}^{1}t^2dt+\int_{1}^{x}tdt=\frac{1}{2}x^2-\frac{1}{6},\\\\ &\ \ 即\Phi(x)=\begin{cases}\frac{1}{3}x^3,\ \ \ \ \ \ \ \ \ x \in [0, \ 1),\\\\\frac{1}{2}x^2-\frac{1}{6},\ \ x \in [1, \ 2].\end{cases},因为\lim_{x \rightarrow 1^{-}}\Phi(x)=\lim_{x \rightarrow 1^{-}}\frac{1}{3}x^3=\frac{1}{3},\lim_{x \rightarrow 1^{+}}\Phi(x)=\lim_{x \rightarrow 1^{+}}\left(\frac{1}{2}x^2-\frac{1}{6}\right)=\frac{1}{3},\\\\ &\ \ 且\Phi(1)=\frac{1}{3},所以\Phi(x)在x=1处连续,也在其他点处连续,因此,\Phi(x)在(0, \ 2)内连续。 & \end{aligned} 当x∈[0, 1)时,Φ(x)=∫0xt2dt=31x3,当x∈[1, 2]时,Φ(x)=∫01t2dt+∫1xtdt=21x2−61, 即Φ(x)=⎩ ⎨ ⎧31x3, x∈[0, 1),21x2−61, x∈[1, 2].,因为x→1−limΦ(x)=x→1−lim31x3=31,x→1+limΦ(x)=x→1+lim(21x2−61)=31, 且Φ(1)=31,所以Φ(x)在x=1处连续,也在其他点处连续,因此,Φ(x)在(0, 2)内连续。
13. 设 f ( x ) = { 1 2 s i n x , 0 ≤ x ≤ π , 0 , x < 0 或 x > π . 求 Φ ( x ) = ∫ 0 x f ( t ) d t 在 ( − ∞ , + ∞ ) 内的表达式 . \begin{aligned}&13. \ 设f(x)=\begin{cases}\frac{1}{2}sin\ x,0 \le x \le \pi,\\\\0,\ \ \ \ \ \ \ x \lt 0或x \gt \pi.\end{cases}求\Phi(x)=\int_{0}^{x}f(t)dt在(-\infty, \ +\infty)内的表达式.&\end{aligned} 13. 设f(x)=⎩ ⎨ ⎧21sin x,0≤x≤π,0, x<0或x>π.求Φ(x)=∫0xf(t)dt在(−∞, +∞)内的表达式.
解:
当 x < 0 时, Φ ( x ) = ∫ 0 x f ( t ) d t = 0 ,当 0 ≤ x ≤ π 时, Φ ( x ) = ∫ 0 x f ( t ) d t = ∫ 0 x 1 2 s i n t d t = 1 − c o s x 2 , 当 x > π 时, Φ ( x ) = ∫ 0 x f ( t ) d t = ∫ 0 π f ( t ) d t + ∫ π x f ( t ) d t = ∫ 0 π 1 2 s i n t d t = 1 , 即 Φ ( x ) = { 0 , x < 0 , 1 − c o s x 2 , 0 ≤ x ≤ π , 1 , x > π \begin{aligned} &\ \ 当x \lt 0时,\Phi(x)=\int_{0}^{x}f(t)dt=0,当0 \le x \le \pi时,\Phi(x)=\int_{0}^{x}f(t)dt=\int_{0}^{x}\frac{1}{2}sin\ tdt=\frac{1-cos\ x}{2},\\\\ &\ \ 当x \gt \pi时,\Phi(x)=\int_{0}^{x}f(t)dt=\int_{0}^{\pi}f(t)dt+\int_{\pi}^{x}f(t)dt=\int_{0}^{\pi}\frac{1}{2}sin\ tdt=1,\\\\ &\ \ 即\Phi(x)=\begin{cases}0,\ \ \ \ \ \ \ \ \ x \lt 0,\\\\ \frac{1-cos\ x}{2},0 \le x \le \pi,\\\\1,\ \ \ \ \ \ \ \ \ x \gt \pi \end{cases} & \end{aligned} 当x<0时,Φ(x)=∫0xf(t)dt=0,当0≤x≤π时,Φ(x)=∫0xf(t)dt=∫0x21sin tdt=21−cos x, 当x>π时,Φ(x)=∫0xf(t)dt=∫0πf(t)dt+∫πxf(t)dt=∫0π21sin tdt=1, 即Φ(x)=⎩ ⎨ ⎧0, x<0,21−cos x,0≤x≤π,1, x>π
14. 设 f ( x ) 在 [ a , b ] 上连续,在 ( a , b ) 内可导且 f ′ ( x ) ≤ 0 , F ( x ) = 1 x − a ∫ a x f ( t ) d t . 证明在 ( a , b ) 内有 F ′ ( x ) ≤ 0. \begin{aligned}&14. \ 设f(x)在[a, \ b]上连续,在(a, \ b)内可导且f'(x) \le 0,F(x)=\frac{1}{x-a}\int_{a}^{x}f(t)dt.证明在(a, \ b)内有F'(x) \le 0.&\end{aligned} 14. 设f(x)在[a, b]上连续,在(a, b)内可导且f′(x)≤0,F(x)=x−a1∫axf(t)dt.证明在(a, b)内有F′(x)≤0.
解:
F ′ ( x ) = 1 ( x − a ) 2 ( ( x − a ) f ( x ) − ∫ a x f ( t ) d t ) = 1 ( x − a ) 2 ( ( x − a ) f ( x ) − ( x − a ) f ( ξ ) ) ( ξ ∈ ( a , x ) ⊂ [ a , b ] ) = x − ξ x − a f ′ ( η ) ( η ∈ ( ξ , x ) ⊂ ( a , b ) ) 根据已知条件 f ′ ( x ) ≤ 0 ,可得 F ′ ( x ) ≤ 0. \begin{aligned} &\ \ F'(x)=\frac{1}{(x-a)^2}\left((x-a)f(x)-\int_{a}^{x}f(t)dt\right)=\frac{1}{(x-a)^2}((x-a)f(x)-(x-a)f(\xi))\ (\xi \in (a, \ x) \subset [a, \ b])\\\\ &\ \ =\frac{x-\xi}{x-a}f'(\eta)\ (\eta \in (\xi, \ x) \subset(a, \ b))\\\\ &\ \ 根据已知条件f'(x) \le 0,可得F'(x) \le 0. & \end{aligned} F′(x)=(x−a)21((x−a)f(x)−∫axf(t)dt)=(x−a)21((x−a)f(x)−(x−a)f(ξ)) (ξ∈(a, x)⊂[a, b]) =x−ax−ξf′(η) (η∈(ξ, x)⊂(a, b)) 根据已知条件f′(x)≤0,可得F′(x)≤0.
15. 设 F ( x ) = ∫ 0 x s i n t t d t ,求 F ′ ( 0 ) . \begin{aligned}&15. \ 设F(x)=\int_{0}^{x}\frac{sin\ t}{t}dt,求F'(0).&\end{aligned} 15. 设F(x)=∫0xtsin tdt,求F′(0).
解:
F ′ ( 0 ) = lim x → 0 F ( x ) − F ( 0 ) x = lim x → 0 ∫ 0 x s i n t t d t x = lim x → 0 s i n x x 1 = 1 \begin{aligned} &\ \ F'(0)=\lim_{x \rightarrow 0}\frac{F(x)-F(0)}{x}=\lim_{x \rightarrow 0}\frac{\int_{0}^{x}\frac{sin\ t}{t}dt}{x}=\lim_{x \rightarrow 0}\frac{\frac{sin\ x}{x}}{1}=1 & \end{aligned} F′(0)=x→0limxF(x)−F(0)=x→0limx∫0xtsin tdt=x→0lim1xsin x=1
16. 设 f ( x ) 在 [ 0 , + ∞ ) 内连续,且 lim x → + ∞ f ( x ) = 1. 证明函数 y = e − x ∫ 0 x e t f ( t ) d t 满足方程 d y d x + y = f ( x ) , 并求 lim x → + ∞ y ( x ) . \begin{aligned}&16. \ 设f(x)在[0, \ +\infty)内连续,且\lim_{x \rightarrow +\infty}f(x)=1.证明函数y=e^{-x}\int_{0}^{x}e^tf(t)dt满足方程\frac{dy}{dx}+y=f(x),\\\\&\ \ \ \ \ \ 并求\lim_{x \rightarrow +\infty}y(x).&\end{aligned} 16. 设f(x)在[0, +∞)内连续,且x→+∞limf(x)=1.证明函数y=e−x∫0xetf(t)dt满足方程dxdy+y=f(x), 并求x→+∞limy(x).
解:
d y d x = − e − x ∫ 0 x e t f ( t ) d t + e − x ⋅ e x f ( x ) = − y + f ( x ) ,因此,函数 y = e − x ∫ 0 x e t f ( t ) d t 满足方程 d y d x + y = f ( x ) 因为 lim x → + ∞ f ( x ) = 1 ,从而存在 N > 0 ,当 x > N 时,有 f ( x ) > 1 2 ,因此, ∫ 0 x e t f ( t ) d t = ∫ 0 N e t f ( t ) d t + ∫ N x e t f ( t ) d t ≥ ∫ 0 N e t f ( t ) d t + ∫ N x 1 2 e N d t = ∫ 0 N e t f ( t ) d t + 1 2 e N ( x − N ) , 当 x → + ∞ 时, ∫ 0 x e t f ( t ) d t → + ∞ ,通过洛必达法则,可得 lim x → + ∞ y ( x ) = lim x → + ∞ ∫ 0 x e t f ( t ) d t e x = lim x → + ∞ e x f ( x ) e x = 1 \begin{aligned} &\ \ \frac{dy}{dx}=-e^{-x}\int_{0}^{x}e^tf(t)dt+e^{-x}\cdot e^xf(x)=-y+f(x),因此,函数y=e^{-x}\int_{0}^{x}e^tf(t)dt满足方程\frac{dy}{dx}+y=f(x)\\\\ &\ \ 因为\lim_{x \rightarrow +\infty}f(x)=1,从而存在N \gt 0,当x \gt N时,有f(x) \gt \frac{1}{2},因此,\\\\ &\ \ \int_{0}^{x}e^tf(t)dt=\int_{0}^{N}e^tf(t)dt+\int_{N}^{x}e^tf(t)dt \ge \int_{0}^{N}e^tf(t)dt+\int_{N}^{x}\frac{1}{2}e^Ndt =\int_{0}^{N}e^tf(t)dt+\frac{1}{2}e^N(x-N),\\\\ &\ \ 当x \rightarrow +\infty时,\int_{0}^{x}e^tf(t)dt \rightarrow +\infty,通过洛必达法则,可得\lim_{x \rightarrow +\infty}y(x)=\lim_{x \rightarrow +\infty}\frac{\int_{0}^{x}e^tf(t)dt}{e^x}=\lim_{x \rightarrow +\infty}\frac{e^xf(x)}{e^x}=1 & \end{aligned} dxdy=−e−x∫0xetf(t)dt+e−x⋅exf(x)=−y+f(x),因此,函数y=e−x∫0xetf(t)dt满足方程dxdy+y=f(x) 因为x→+∞limf(x)=1,从而存在N>0,当x>N时,有f(x)>21,因此, ∫0xetf(t)dt=∫0Netf(t)dt+∫Nxetf(t)dt≥∫0Netf(t)dt+∫Nx21eNdt=∫0Netf(t)dt+21eN(x−N), 当x→+∞时,∫0xetf(t)dt→+∞,通过洛必达法则,可得x→+∞limy(x)=x→+∞limex∫0xetf(t)dt=x→+∞limexexf(x)=1