高等数学(第七版)同济大学 习题5-3 个人解答(前3题)

高等数学(第七版)同济大学 习题5-3(前3题)

 

1.  计算下列定积分: \begin{aligned}&1. \ 计算下列定积分:&\end{aligned} 1. 计算下列定积分:

   ( 1 )    ∫ π 3 π s i n ( x + π 3 ) d x ;                              ( 2 )    ∫ − 2 1 d x ( 11 + 5 x ) 3 ;    ( 3 )    ∫ 0 π 2 s i n φ c o s 3   φ d φ ;                                ( 4 )    ∫ 0 π ( 1 − s i n 3   θ ) d θ ;    ( 5 )    ∫ π 6 π 2 c o s 2   u d u ;                                         ( 6 )    ∫ 0 2 2 − x 2 d x ;    ( 7 )    ∫ − 2 2 8 − 2 y 2 d y ;                                  ( 8 )    ∫ 1 2 1 1 − x 2 x 2 d x ;    ( 9 )    ∫ 0 a x 2 a 2 − x 2 d x   ( a > 0 ) ;                   ( 10 )    ∫ 1 3 d x x 2 1 + x 2 ;    ( 11 )    ∫ − 1 1 x d x 5 − 4 x ;                                        ( 12 )    ∫ 1 4 d x 1 + x ;    ( 13 )    ∫ 3 4 1 d x 1 − x − 1 ;                                    ( 14 )    ∫ 0 2 a x d x 3 a 2 − x 2   ( a > 0 ) ;    ( 15 )    ∫ 0 1 t e − t 2 2 d t ;                                            ( 16 )    ∫ 1 e 2 d x x 1 + l n   x ;    ( 17 )    ∫ − 2 0 ( x + 2 ) d x x 2 + 2 x + 2 ;                                   ( 18 )    ∫ 0 2 x d x ( x 2 − 2 x + 2 ) 2 ;      ( 19 )    ∫ − π π x 4 s i n   x d x ;                                      ( 20 )    ∫ − π 2 π 2 4 c o s 4   θ d θ ;    ( 21 )    ∫ − 1 2 1 2 ( a r c s i n   x ) 2 1 − x 2 d x ;                              ( 22 )    ∫ − 5 5 x 3 s i n 2   x x 4 + 2 x 2 + 1 d x ;    ( 23 )    ∫ − π 2 π 2 c o s   x c o s   2 x d x ;                              ( 24 )    ∫ − π 2 π 2 c o s   x − c o s 3   x d x ;    ( 25 )    ∫ 0 π 1 + c o s   2 x d x ;                              ( 26 )    ∫ 0 2 π ∣ s i n ( x + 1 ) ∣ d x . \begin{aligned} &\ \ (1)\ \ \int_{\frac{\pi}{3}}^{\pi}sin\left(x+\frac{\pi}{3}\right)dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \int_{-2}^{1}\frac{dx}{(11+5x)^3};\\\\ &\ \ (3)\ \ \int_{0}^{\frac{\pi}{2}}sin \varphi cos^3\ \varphi d\varphi;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \int_{0}^{\pi}(1-sin^3\ \theta) d\theta;\\\\ &\ \ (5)\ \ \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}cos^2\ udu;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)\ \ \int_{0}^{\sqrt{2}}\sqrt{2-x^2}dx;\\\\ &\ \ (7)\ \ \int_{-\sqrt{2}}^{\sqrt{2}}\sqrt{8-2y^2}dy;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (8)\ \ \int_{\frac{1}{\sqrt{2}}}^{1}\frac{\sqrt{1-x^2}}{x^2}dx;\\\\ &\ \ (9)\ \ \int_{0}^{a}x^2\sqrt{a^2-x^2}dx\ (a \gt 0);\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (10)\ \ \int_{1}^{\sqrt{3}}\frac{dx}{x^2\sqrt{1+x^2}};\\\\ &\ \ (11)\ \ \int_{-1}^{1}\frac{xdx}{\sqrt{5-4x}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (12)\ \ \int_{1}^{4}\frac{dx}{1+\sqrt{x}};\\\\ &\ \ (13)\ \ \int_{\frac{3}{4}}^{1}\frac{dx}{\sqrt{1-x}-1};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (14)\ \ \int_{0}^{\sqrt{2}a}\frac{xdx}{\sqrt{3a^2-x^2}}\ (a \gt 0);\\\\ &\ \ (15)\ \ \int_{0}^{1}te^{-\frac{t^2}{2}}dt;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (16)\ \ \int_{1}^{e^2}\frac{dx}{x\sqrt{1+ln\ x}};\\\\ &\ \ (17)\ \ \int_{-2}^{0}\frac{(x+2)dx}{x^2+2x+2};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (18)\ \ \int_{0}^{2}\frac{xdx}{(x^2-2x+2)^2};\\\\\ &\ \ (19)\ \ \int_{-\pi}^{\pi}x^4sin\ xdx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (20)\ \ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}4cos^4\ \theta d\theta;\\\\ &\ \ (21)\ \ \int_{-\frac{1}{2}}^{\frac{1}{2}}\frac{(arcsin\ x)^2}{\sqrt{1-x^2}}dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (22)\ \ \int_{-5}^{5}\frac{x^3sin^2\ x}{x^4+2x^2+1}dx;\\\\ &\ \ (23)\ \ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}cos\ xcos\ 2xdx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (24)\ \ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sqrt{cos\ x-cos^3\ x}dx;\\\\ &\ \ (25)\ \ \int_{0}^{\pi}\sqrt{1+cos\ 2x}dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (26)\ \ \int_{0}^{2\pi}|sin(x+1)|dx. & \end{aligned}    (1)  3ππsin(x+3π)dx                             (2)  21(11+5x)3dx  (3)  02πsinφcos3 φdφ                               (4)  0π(1sin3 θ)dθ  (5)  6π2πcos2 udu                                        (6)  02 2x2 dx  (7)  2 2 82y2 dy                                 (8)  2 11x21x2 dx  (9)  0ax2a2x2 dx (a>0)                  (10)  13 x21+x2 dx  (11)  1154x xdx                                       (12)  141+x dx  (13)  4311x 1dx                                   (14)  02 a3a2x2 xdx (a>0)  (15)  01te2t2dt                                           (16)  1e2x1+ln x dx  (17)  20x2+2x+2(x+2)dx                                  (18)  02(x22x+2)2xdx  (19)  ππx4sin xdx                                     (20)  2π2π4cos4 θdθ  (21)  21211x2 (arcsin x)2dx                             (22)  55x4+2x2+1x3sin2 xdx  (23)  2π2πcos xcos 2xdx                             (24)  2π2πcos xcos3 x dx  (25)  0π1+cos 2x dx                             (26)  02πsin(x+1)dx.

解:

   ( 1 )   ∫ π 3 π s i n ( x + π 3 ) d x = − [ c o s ( x + π 3 ) ] π 3 π = 0    ( 2 )   ∫ − 2 1 d x ( 11 + 5 x ) 3 = − 1 10 [ 1 ( 11 + 5 x ) 2 ] − 2 1 = 51 512    ( 3 )   ∫ 0 π 2 s i n φ c o s 3   φ d φ = − ∫ 0 π 2 c o s 3   φ d ( c o s   φ ) = − [ 1 4 c o s 4   φ ] 0 π 2 = 1 4    ( 4 )   ∫ 0 π ( 1 − s i n 3   θ ) d θ = π + ∫ 0 π ( 1 − c o s 2   θ ) d ( c o s   θ ) = π + [ c o s   θ − 1 3 c o s 3   θ ] 0 π = π − 4 3    ( 5 )   ∫ π 6 π 2 c o s 2   u d u = ∫ π 6 π 2 c o s   2 u + 1 2 d u = 1 2 ∫ π 6 π 2 c o s   2 u d u + π 6 = 1 4 [ s i n   2 u ] π 6 π 2 + π 6 = − 3 8 + π 6    ( 6 )  令 x = 2 s i n   u ,得 ∫ 0 2 2 − x 2 d x = ∫ 0 π 2 2 c o s 2   u d u = ∫ 0 π 2 ( c o s   2 u + 1 ) d u = 1 2 ∫ 0 π 2 c o s   2 u d ( 2 u ) + π 2 =           1 2 [ s i n   2 u ] 0 π 2 + π 2 = π 2    ( 7 )  令 y = 2 s i n   u ,得 ∫ − 2 2 8 − 2 y 2 d y = ∫ − π 4 π 4 4 2 c o s 2   u d u = 2 2 ∫ − π 4 π 4 ( c o s   2 u + 1 ) d u =           2 ∫ − π 4 π 4 c o s   2 u d ( 2 u ) + 2 π = 2 [ s i n   2 u ] − π 4 π 4 + 2 π = 2 ( 2 + π )    ( 8 )  令 x = s i n   u ,得 ∫ 1 2 1 1 − x 2 x 2 d x = ∫ π 4 π 2 c o t 2   u d u = ∫ π 4 π 2 ( c s c 2   u − 1 ) d u = − [ c o t   u ] π 4 π 2 − π 4 = 1 − π 4    ( 9 )  令 x = a s i n   u ,得 ∫ 0 a x 2 a 2 − x 2 d x = ∫ 0 π 2 a 4 s i n 2   u c o s 2   u d u = a 4 4 ∫ 0 π 2 s i n 2   2 u d u =           a 4 8 ∫ 0 π 2 ( 1 − c o s   4 u ) d u = a 4 16 π − a 4 32 ∫ 0 π 2 c o s   4 u d ( 4 u ) = a 4 16 π − a 4 32 [ s i n   4 u ] 0 π 2 = a 4 16 π    ( 10 )  令 x = t a n   u ,得 ∫ 1 3 d x x 2 1 + x 2 = ∫ π 4 π 3 s e c 2   u t a n 2   u 1 + t a n 2   u d u = ∫ π 4 π 3 c s c   u c o t   u d u = − [ c s c   u ] π 4 π 3 = 2 − 2 3 3    ( 11 )  令 u = 5 − 4 x ,则 x = 5 − u 2 4 , d x = − 1 2 u d u ,得 ∫ − 1 1 x d x 5 − 4 x = ∫ 3 1 5 − u 2 4 u ⋅ − 1 2 u d u =            ∫ 3 1 u 2 − 5 8 d u = 1 8 ∫ 3 1 u 2 d u + 5 4 = 1 24 [ u 3 ] 3 1 + 5 4 = 1 6    ( 12 )  令 u = 1 + x ,则 x = ( u − 1 ) 2 , d x = 2 ( u − 1 ) d u ,得 ∫ 1 4 d x 1 + x = ∫ 2 3 ( 2 − 2 u ) d u =             2 [ u ] 2 3 − 2 [ l n   u ] 2 3 = 2 − 2 l n   3 2    ( 13 )  令 u = 1 − x − 1 ,则 x = 1 − ( u + 1 ) 2 , d x = − 2 ( u + 1 ) d u ,得 ∫ 3 4 1 d x 1 − x − 1 =            ∫ − 1 2 − 1 − 2 u − 2 u d u = 1 − 2 ∫ − 1 2 − 1 1 u d u = 1 − 2 l n   2    ( 14 )  令 x = 3 a s i n   u ,则 d x = 3 a c o s   u d u ,得 ∫ 0 2 a x d x 3 a 2 − x 2 = ∫ 0 a r c s i n   6 3 3 a s i n   u d u =            − 3 a [ c o s   u ] 0 a r c s i n   6 3 = ( 3 − 1 ) a    ( 15 )   ∫ 0 1 t e − t 2 2 d t = [ − e − t 2 2 ] 0 1 = − e − 1 2 + 1    ( 16 )   ∫ 1 e 2 d x x 1 + l n   x = [ 2 1 + l n   x ] 1 e 2 = 2 3 − 2    ( 17 )   ∫ − 2 0 ( x + 2 ) d x x 2 + 2 x + 2 = ∫ − 2 0 ( x + 1 ) + 1 ( x + 1 ) 2 + 1 d x = [ 1 2 l n ( x 2 + 2 x + 2 ) + a r c t a n ( x + 1 ) ] − 2 0 = 1 2 l n   2 + π 4 − 1 2 l n   2 + π 4 = π 2    ( 18 )  令 x = 1 + t a n   u ,则 d x = s e c 2   u d u ,得 ∫ 0 2 x d x ( x 2 − 2 x + 2 ) 2 = ∫ 0 2 x d x [ ( x − 1 ) 2 + 1 ] 2 = ∫ − π 4 π 4 1 + t a n   u s e c 2   u d u =             2 ∫ 0 π 4 c o s 2   u d u = ∫ 0 π 4 ( 1 + c o s   2 u ) d u = π 4 + 1 2    ( 19 )  因为被积函数是奇函数,所以, ∫ − π π x 4 s i n   x d x = 0    ( 20 )  因为被积函数是偶函数,所以, ∫ − π 2 π 2 4 c o s 4   θ d θ = 2 ∫ 0 π 2 4 c o s 4   θ d θ = 8 ∫ 0 π 2 [ 3 8 θ + 1 4 s i n   2 θ + 1 32 s i n   4 θ ] 0 π 2 = 3 2 π    ( 21 )  因为被积函数是偶函数,所以, ∫ − 1 2 1 2 ( a r c s i n   x ) 2 1 − x 2 d x = 2 ∫ 0 1 2 ( a r c s i n   x ) 2 1 − x 2 d x =             2 ∫ 0 1 2 ( a r c s i n   x ) 2 d ( a r c s i n   x ) = 2 3 [ ( a r c s i n   x ) 3 ] 0 1 2 = π 3 324    ( 22 )  因为被积函数是奇函数,所以, ∫ − 5 5 x 3 s i n 2   x x 4 + 2 x 2 + 1 d x = 0    ( 23 )   ∫ − π 2 π 2 c o s   x c o s   2 x d x = ∫ − π 2 π 2 c o s   x ( 1 − 2 s i n 2   x ) d x = ∫ − π 2 π 2 ( 1 − 2 s i n 2   x ) d ( s i n   x ) = [ s i n   x − 2 3 s i n 3   x ] − π 2 π 2 = 2 3    ( 24 )   ∫ − π 2 π 2 c o s   x − c o s 3   x d x = 2 ∫ 0 π 2 c o s   x s i n   x d x ,令 u = c o s   x ,得 2 ∫ 0 π 2 c o s   x s i n   x d x = − 2 ∫ 1 0 u d u = 4 3    ( 25 )   ∫ 0 π 1 + c o s   2 x d x = ∫ 0 π 2 s i n   x d x = 2 [ − c o s   x ] 0 π = 2 2    ( 26 )  令 x = u − 1 ,则 d x = d u ,得 ∫ 0 2 π ∣ s i n ( x + 1 ) ∣ d x = ∫ 1 2 π + 1 ∣ s i n   u ∣ d u ,           因为 ∣ s i n   x ∣ 是以 π 为周期的周期函数,所以, ∫ 1 2 π + 1 ∣ s i n   u ∣ d u = 2 ∫ 0 π ∣ s i n   u ∣ d u = 4 \begin{aligned} &\ \ (1)\ \int_{\frac{\pi}{3}}^{\pi}sin\left(x+\frac{\pi}{3}\right)dx=-\left[cos(x+\frac{\pi}{3})\right]_{\frac{\pi}{3}}^{\pi}=0\\\\ &\ \ (2)\ \int_{-2}^{1}\frac{dx}{(11+5x)^3}=-\frac{1}{10}\left[\frac{1}{(11+5x)^2}\right]_{-2}^{1}=\frac{51}{512}\\\\ &\ \ (3)\ \int_{0}^{\frac{\pi}{2}}sin \varphi cos^3\ \varphi d\varphi=-\int_{0}^{\frac{\pi}{2}}cos^3\ \varphi d(cos\ \varphi)=-\left[\frac{1}{4}cos^4\ \varphi\right]_{0}^{\frac{\pi}{2}}=\frac{1}{4}\\\\ &\ \ (4)\ \int_{0}^{\pi}(1-sin^3\ \theta) d\theta=\pi+\int_{0}^{\pi}(1-cos^2\ \theta)d(cos\ \theta)=\pi+\left[cos\ \theta-\frac{1}{3}cos^3\ \theta\right]_{0}^{\pi}=\pi-\frac{4}{3}\\\\ &\ \ (5)\ \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}cos^2\ udu=\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\frac{cos\ 2u+1}{2}du=\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}cos\ 2udu+\frac{\pi}{6}=\frac{1}{4}\left[sin\ 2u\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}+\frac{\pi}{6}=-\frac{\sqrt{3}}{8}+\frac{\pi}{6}\\\\ &\ \ (6)\ 令x=\sqrt{2}sin\ u,得\int_{0}^{\sqrt{2}}\sqrt{2-x^2}dx=\int_{0}^{\frac{\pi}{2}}2cos^2\ udu=\int_{0}^{\frac{\pi}{2}}(cos\ 2u+1)du=\frac{1}{2}\int_{0}^{\frac{\pi}{2}}cos\ 2ud(2u)+\frac{\pi}{2}=\\\\ &\ \ \ \ \ \ \ \ \ \frac{1}{2}[sin\ 2u]_{0}^{\frac{\pi}{2}}+\frac{\pi}{2}=\frac{\pi}{2}\\\\ &\ \ (7)\ 令y=2sin\ u,得\int_{-\sqrt{2}}^{\sqrt{2}}\sqrt{8-2y^2}dy=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}4\sqrt{2}cos^2\ udu=2\sqrt{2}\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}(cos\ 2u+1)du=\\\\ &\ \ \ \ \ \ \ \ \ \sqrt{2}\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}cos\ 2ud(2u)+\sqrt{2}\pi=\sqrt{2}[sin\ 2u]_{-\frac{\pi}{4}}^{\frac{\pi}{4}}+\sqrt{2}\pi=\sqrt{2}(2+\pi)\\\\ &\ \ (8)\ 令x=sin\ u,得\int_{\frac{1}{\sqrt{2}}}^{1}\frac{\sqrt{1-x^2}}{x^2}dx=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}cot^2\ udu=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(csc^2\ u-1)du=-[cot\ u]_{\frac{\pi}{4}}^{\frac{\pi}{2}}-\frac{\pi}{4}=1-\frac{\pi}{4}\\\\ &\ \ (9)\ 令x=asin \ u,得\int_{0}^{a}x^2\sqrt{a^2-x^2}dx=\int_{0}^{\frac{\pi}{2}}a^4sin^2\ ucos^2\ udu=\frac{a^4}{4}\int_{0}^{\frac{\pi}{2}}sin^2\ 2udu=\\\\ &\ \ \ \ \ \ \ \ \ \frac{a^4}{8}\int_{0}^{\frac{\pi}{2}}(1-cos\ 4u)du=\frac{a^4}{16}\pi-\frac{a^4}{32}\int_{0}^{\frac{\pi}{2}}cos\ 4ud(4u)=\frac{a^4}{16}\pi-\frac{a^4}{32}[sin\ 4u]_{0}^{\frac{\pi}{2}}=\frac{a^4}{16}\pi\\\\ &\ \ (10)\ 令x=tan\ u,得\int_{1}^{\sqrt{3}}\frac{dx}{x^2\sqrt{1+x^2}}=\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{sec^2\ u}{tan^2\ u\sqrt{1+tan^2\ u}}du=\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}csc\ ucot\ udu=-[csc\ u]_{\frac{\pi}{4}}^{\frac{\pi}{3}}=\sqrt{2}-\frac{2\sqrt{3}}{3}\\\\ &\ \ (11)\ 令u=\sqrt{5-4x},则x=\frac{5-u^2}{4},dx=-\frac{1}{2}udu,得\int_{-1}^{1}\frac{xdx}{\sqrt{5-4x}}=\int_{3}^{1}\frac{5-u^2}{4u}\cdot -\frac{1}{2}udu=\\\\ &\ \ \ \ \ \ \ \ \ \ \int_{3}^{1}\frac{u^2-5}{8}du=\frac{1}{8}\int_{3}^{1}u^2du+\frac{5}{4}=\frac{1}{24}[u^3]_{3}^{1}+\frac{5}{4}=\frac{1}{6}\\\\ &\ \ (12)\ 令u=1+\sqrt{x},则x=(u-1)^2,dx=2(u-1)du,得\int_{1}^{4}\frac{dx}{1+\sqrt{x}}=\int_{2}^{3}\left(2-\frac{2}{u}\right)du=\\\\ &\ \ \ \ \ \ \ \ \ \ \ 2[u]_{2}^{3}-2[ln\ u]_{2}^{3}=2-2ln\ \frac{3}{2}\\\\ &\ \ (13)\ 令u=\sqrt{1-x}-1,则x=1-(u+1)^2,dx=-2(u+1)du,得\int_{\frac{3}{4}}^{1}\frac{dx}{\sqrt{1-x}-1}=\\\\ &\ \ \ \ \ \ \ \ \ \ \int_{-\frac{1}{2}}^{-1}\frac{-2u-2}{u}du=1-2\int_{-\frac{1}{2}}^{-1}\frac{1}{u}du=1-2ln\ 2\\\\ &\ \ (14)\ 令x=\sqrt{3}asin\ u,则dx=\sqrt{3}acos\ udu,得\int_{0}^{\sqrt{2}a}\frac{xdx}{\sqrt{3a^2-x^2}}=\int_{0}^{arcsin\ \frac{\sqrt{6}}{3}}\sqrt{3}asin\ udu=\\\\ &\ \ \ \ \ \ \ \ \ \ -\sqrt{3}a[cos\ u]_{0}^{arcsin\ \frac{\sqrt{6}}{3}}=(\sqrt{3}-1)a\\\\ &\ \ (15)\ \int_{0}^{1}te^{-\frac{t^2}{2}}dt=[-e^{-\frac{t^2}{2}}]_{0}^{1}=-e^{-\frac{1}{2}}+1\\\\ &\ \ (16)\ \int_{1}^{e^2}\frac{dx}{x\sqrt{1+ln\ x}}=[2\sqrt{1+ln\ x}]_{1}^{e^2}=2\sqrt{3}-2\\\\ &\ \ (17)\ \int_{-2}^{0}\frac{(x+2)dx}{x^2+2x+2}=\int_{-2}^{0}\frac{(x+1)+1}{(x+1)^2+1}dx=\left[\frac{1}{2}ln(x^2+2x+2)+arctan(x+1)\right]_{-2}^{0}=\frac{1}{2}ln\ 2+\frac{\pi}{4}-\frac{1}{2}ln\ 2+\frac{\pi}{4}=\frac{\pi}{2}\\\\ &\ \ (18)\ 令x=1+tan\ u,则dx=sec^2\ udu,得\int_{0}^{2}\frac{xdx}{(x^2-2x+2)^2}=\int_{0}^{2}\frac{xdx}{[(x-1)^2+1]^2}=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\frac{1+tan\ u}{sec^2\ u}du=\\\\ &\ \ \ \ \ \ \ \ \ \ \ 2\int_{0}^{\frac{\pi}{4}}cos^2\ udu=\int_{0}^{\frac{\pi}{4}}(1+cos\ 2u)du=\frac{\pi}{4}+\frac{1}{2}\\\\ &\ \ (19)\ 因为被积函数是奇函数,所以,\int_{-\pi}^{\pi}x^4sin\ xdx=0\\\\ &\ \ (20)\ 因为被积函数是偶函数,所以,\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}4cos^4\ \theta d\theta=2\int_{0}^{\frac{\pi}{2}}4cos^4\ \theta d\theta=8\int_{0}^{\frac{\pi}{2}}\left[\frac{3}{8}\theta+\frac{1}{4}sin\ 2\theta+\frac{1}{32}sin\ 4\theta\right]_{0}^{\frac{\pi}{2}}=\frac{3}{2}\pi\\\\ &\ \ (21)\ 因为被积函数是偶函数,所以,\int_{-\frac{1}{2}}^{\frac{1}{2}}\frac{(arcsin\ x)^2}{\sqrt{1-x^2}}dx=2\int_{0}^{\frac{1}{2}}\frac{(arcsin\ x)^2}{\sqrt{1-x^2}}dx=\\\\ &\ \ \ \ \ \ \ \ \ \ \ 2\int_{0}^{\frac{1}{2}}(arcsin\ x)^2d(arcsin\ x)=\frac{2}{3}[(arcsin\ x)^3]_{0}^{\frac{1}{2}}=\frac{\pi^3}{324}\\\\ &\ \ (22)\ 因为被积函数是奇函数,所以,\int_{-5}^{5}\frac{x^3sin^2\ x}{x^4+2x^2+1}dx=0\\\\ &\ \ (23)\ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}cos\ xcos\ 2xdx=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}cos\ x(1-2sin^2\ x)dx=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(1-2sin^2\ x)d(sin\ x)=\left[sin\ x-\frac{2}{3}sin^3\ x\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}=\frac{2}{3}\\\\ &\ \ (24)\ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sqrt{cos\ x-cos^3\ x}dx=2\int_{0}^{\frac{\pi}{2}}\sqrt{cos\ x}sin\ xdx,令u=cos\ x,得2\int_{0}^{\frac{\pi}{2}}\sqrt{cos\ x}sin\ xdx=-2\int_{1}^{0}\sqrt{u}du=\frac{4}{3}\\\\ &\ \ (25)\ \int_{0}^{\pi}\sqrt{1+cos\ 2x}dx=\int_{0}^{\pi}\sqrt{2}sin\ xdx=\sqrt{2}[-cos\ x]_{0}^{\pi}=2\sqrt{2}\\\\ &\ \ (26)\ 令x=u-1,则dx=du,得\int_{0}^{2\pi}|sin(x+1)|dx=\int_{1}^{2\pi+1}|sin\ u|du,\\\\ &\ \ \ \ \ \ \ \ \ \ 因为|sin\ x|是以\pi为周期的周期函数,所以,\int_{1}^{2\pi+1}|sin\ u|du=2\int_{0}^{\pi}|sin\ u|du=4 & \end{aligned}   (1) 3ππsin(x+3π)dx=[cos(x+3π)]3ππ=0  (2) 21(11+5x)3dx=101[(11+5x)21]21=51251  (3) 02πsinφcos3 φdφ=02πcos3 φd(cos φ)=[41cos4 φ]02π=41  (4) 0π(1sin3 θ)dθ=π+0π(1cos2 θ)d(cos θ)=π+[cos θ31cos3 θ]0π=π34  (5) 6π2πcos2 udu=6π2π2cos 2u+1du=216π2πcos 2udu+6π=41[sin 2u]6π2π+6π=83 +6π  (6) x=2 sin u,得02 2x2 dx=02π2cos2 udu=02π(cos 2u+1)du=2102πcos 2ud(2u)+2π=         21[sin 2u]02π+2π=2π  (7) y=2sin u,得2 2 82y2 dy=4π4π42 cos2 udu=22 4π4π(cos 2u+1)du=         2 4π4πcos 2ud(2u)+2 π=2 [sin 2u]4π4π+2 π=2 (2+π)  (8) x=sin u,得2 11x21x2 dx=4π2πcot2 udu=4π2π(csc2 u1)du=[cot u]4π2π4π=14π  (9) x=asin u,得0ax2a2x2 dx=02πa4sin2 ucos2 udu=4a402πsin2 2udu=         8a402π(1cos 4u)du=16a4π32a402πcos 4ud(4u)=16a4π32a4[sin 4u]02π=16a4π  (10) x=tan u,得13 x21+x2 dx=4π3πtan2 u1+tan2 u sec2 udu=4π3πcsc ucot udu=[csc u]4π3π=2 323   (11) u=54x ,则x=45u2dx=21udu,得1154x xdx=314u5u221udu=          318u25du=8131u2du+45=241[u3]31+45=61  (12) u=1+x ,则x=(u1)2dx=2(u1)du,得141+x dx=23(2u2)du=           2[u]232[ln u]23=22ln 23  (13) u=1x 1,则x=1(u+1)2dx=2(u+1)du,得4311x 1dx=          211u2u2du=12211u1du=12ln 2  (14) x=3 asin u,则dx=3 acos udu,得02 a3a2x2 xdx=0arcsin 36 3 asin udu=          3 a[cos u]0arcsin 36 =(3 1)a  (15) 01te2t2dt=[e2t2]01=e21+1  (16) 1e2x1+ln x dx=[21+ln x ]1e2=23 2  (17) 20x2+2x+2(x+2)dx=20(x+1)2+1(x+1)+1dx=[21ln(x2+2x+2)+arctan(x+1)]20=21ln 2+4π21ln 2+4π=2π  (18) x=1+tan u,则dx=sec2 udu,得02(x22x+2)2xdx=02[(x1)2+1]2xdx=4π4πsec2 u1+tan udu=           204πcos2 udu=04π(1+cos 2u)du=4π+21  (19) 因为被积函数是奇函数,所以,ππx4sin xdx=0  (20) 因为被积函数是偶函数,所以,2π2π4cos4 θdθ=202π4cos4 θdθ=802π[83θ+41sin 2θ+321sin 4θ]02π=23π  (21) 因为被积函数是偶函数,所以,21211x2 (arcsin x)2dx=20211x2 (arcsin x)2dx=           2021(arcsin x)2d(arcsin x)=32[(arcsin x)3]021=324π3  (22) 因为被积函数是奇函数,所以,55x4+2x2+1x3sin2 xdx=0  (23) 2π2πcos xcos 2xdx=2π2πcos x(12sin2 x)dx=2π2π(12sin2 x)d(sin x)=[sin x32sin3 x]2π2π=32  (24) 2π2πcos xcos3 x dx=202πcos x sin xdx,令u=cos x,得202πcos x sin xdx=210u du=34  (25) 0π1+cos 2x dx=0π2 sin xdx=2 [cos x]0π=22   (26) x=u1,则dx=du,得02πsin(x+1)dx=12π+1sin udu          因为sin x是以π为周期的周期函数,所以,12π+1sin udu=20πsin udu=4


2.  设 f ( x ) 在 [ a ,   b ] 上连续,证明: ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x . \begin{aligned}&2. \ 设f(x)在[a, \ b]上连续,证明:\int_{a}^{b}f(x)dx=\int_{a}^{b}f(a+b-x)dx.&\end{aligned} 2. f(x)[a, b]上连续,证明:abf(x)dx=abf(a+bx)dx.
解:

  令 x = a + b − u ,得 ∫ a b f ( x ) d x = − ∫ b a f ( a + b − u ) d u = ∫ a b f ( a + b − u ) d u = ∫ a b f ( a + b − x ) d x \begin{aligned} &\ \ 令x=a+b-u,得\int_{a}^{b}f(x)dx=-\int_{b}^{a}f(a+b-u)du=\int_{a}^{b}f(a+b-u)du=\int_{a}^{b}f(a+b-x)dx & \end{aligned}   x=a+bu,得abf(x)dx=baf(a+bu)du=abf(a+bu)du=abf(a+bx)dx


3.  证明: ∫ x 1 d t 1 + t 2 = ∫ 1 1 x d t 1 + t 2   ( x > 0 ) . \begin{aligned}&3. \ 证明:\int_{x}^{1}\frac{dt}{1+t^2}=\int_{1}^{\frac{1}{x}}\frac{dt}{1+t^2}\ (x \gt 0).&\end{aligned} 3. 证明:x11+t2dt=1x11+t2dt (x>0).
解:

  令 u = 1 t ,则 t = 1 u , d t = − 1 u 2 ,得 ∫ x 1 d t 1 + t 2 = − ∫ 1 x 1 d u 1 + u 2 = ∫ 1 1 x d u 1 + u 2 = ∫ 1 1 x d t 1 + t 2 \begin{aligned} &\ \ 令u=\frac{1}{t},则t=\frac{1}{u},dt=-\frac{1}{u^2},得\int_{x}^{1}\frac{dt}{1+t^2}=-\int_{\frac{1}{x}}^{1}\frac{du}{1+u^2}=\int_{1}^{\frac{1}{x}}\frac{du}{1+u^2}=\int_{1}^{\frac{1}{x}}\frac{dt}{1+t^2} & \end{aligned}   u=t1,则t=u1dt=u21,得x11+t2dt=x111+u2du=1x11+u2du=1x11+t2dt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Navigator_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值