高等数学(第七版)同济大学 习题5-3(前3题)
1. 计算下列定积分: \begin{aligned}&1. \ 计算下列定积分:&\end{aligned} 1. 计算下列定积分:
( 1 ) ∫ π 3 π s i n ( x + π 3 ) d x ; ( 2 ) ∫ − 2 1 d x ( 11 + 5 x ) 3 ; ( 3 ) ∫ 0 π 2 s i n φ c o s 3 φ d φ ; ( 4 ) ∫ 0 π ( 1 − s i n 3 θ ) d θ ; ( 5 ) ∫ π 6 π 2 c o s 2 u d u ; ( 6 ) ∫ 0 2 2 − x 2 d x ; ( 7 ) ∫ − 2 2 8 − 2 y 2 d y ; ( 8 ) ∫ 1 2 1 1 − x 2 x 2 d x ; ( 9 ) ∫ 0 a x 2 a 2 − x 2 d x ( a > 0 ) ; ( 10 ) ∫ 1 3 d x x 2 1 + x 2 ; ( 11 ) ∫ − 1 1 x d x 5 − 4 x ; ( 12 ) ∫ 1 4 d x 1 + x ; ( 13 ) ∫ 3 4 1 d x 1 − x − 1 ; ( 14 ) ∫ 0 2 a x d x 3 a 2 − x 2 ( a > 0 ) ; ( 15 ) ∫ 0 1 t e − t 2 2 d t ; ( 16 ) ∫ 1 e 2 d x x 1 + l n x ; ( 17 ) ∫ − 2 0 ( x + 2 ) d x x 2 + 2 x + 2 ; ( 18 ) ∫ 0 2 x d x ( x 2 − 2 x + 2 ) 2 ; ( 19 ) ∫ − π π x 4 s i n x d x ; ( 20 ) ∫ − π 2 π 2 4 c o s 4 θ d θ ; ( 21 ) ∫ − 1 2 1 2 ( a r c s i n x ) 2 1 − x 2 d x ; ( 22 ) ∫ − 5 5 x 3 s i n 2 x x 4 + 2 x 2 + 1 d x ; ( 23 ) ∫ − π 2 π 2 c o s x c o s 2 x d x ; ( 24 ) ∫ − π 2 π 2 c o s x − c o s 3 x d x ; ( 25 ) ∫ 0 π 1 + c o s 2 x d x ; ( 26 ) ∫ 0 2 π ∣ s i n ( x + 1 ) ∣ d x . \begin{aligned} &\ \ (1)\ \ \int_{\frac{\pi}{3}}^{\pi}sin\left(x+\frac{\pi}{3}\right)dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \int_{-2}^{1}\frac{dx}{(11+5x)^3};\\\\ &\ \ (3)\ \ \int_{0}^{\frac{\pi}{2}}sin \varphi cos^3\ \varphi d\varphi;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \int_{0}^{\pi}(1-sin^3\ \theta) d\theta;\\\\ &\ \ (5)\ \ \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}cos^2\ udu;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)\ \ \int_{0}^{\sqrt{2}}\sqrt{2-x^2}dx;\\\\ &\ \ (7)\ \ \int_{-\sqrt{2}}^{\sqrt{2}}\sqrt{8-2y^2}dy;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (8)\ \ \int_{\frac{1}{\sqrt{2}}}^{1}\frac{\sqrt{1-x^2}}{x^2}dx;\\\\ &\ \ (9)\ \ \int_{0}^{a}x^2\sqrt{a^2-x^2}dx\ (a \gt 0);\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (10)\ \ \int_{1}^{\sqrt{3}}\frac{dx}{x^2\sqrt{1+x^2}};\\\\ &\ \ (11)\ \ \int_{-1}^{1}\frac{xdx}{\sqrt{5-4x}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (12)\ \ \int_{1}^{4}\frac{dx}{1+\sqrt{x}};\\\\ &\ \ (13)\ \ \int_{\frac{3}{4}}^{1}\frac{dx}{\sqrt{1-x}-1};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (14)\ \ \int_{0}^{\sqrt{2}a}\frac{xdx}{\sqrt{3a^2-x^2}}\ (a \gt 0);\\\\ &\ \ (15)\ \ \int_{0}^{1}te^{-\frac{t^2}{2}}dt;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (16)\ \ \int_{1}^{e^2}\frac{dx}{x\sqrt{1+ln\ x}};\\\\ &\ \ (17)\ \ \int_{-2}^{0}\frac{(x+2)dx}{x^2+2x+2};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (18)\ \ \int_{0}^{2}\frac{xdx}{(x^2-2x+2)^2};\\\\\ &\ \ (19)\ \ \int_{-\pi}^{\pi}x^4sin\ xdx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (20)\ \ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}4cos^4\ \theta d\theta;\\\\ &\ \ (21)\ \ \int_{-\frac{1}{2}}^{\frac{1}{2}}\frac{(arcsin\ x)^2}{\sqrt{1-x^2}}dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (22)\ \ \int_{-5}^{5}\frac{x^3sin^2\ x}{x^4+2x^2+1}dx;\\\\ &\ \ (23)\ \ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}cos\ xcos\ 2xdx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (24)\ \ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sqrt{cos\ x-cos^3\ x}dx;\\\\ &\ \ (25)\ \ \int_{0}^{\pi}\sqrt{1+cos\ 2x}dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (26)\ \ \int_{0}^{2\pi}|sin(x+1)|dx. & \end{aligned} (1) ∫3ππsin(x+3π)dx; (2) ∫−21(11+5x)3dx; (3) ∫02πsinφcos3 φdφ; (4) ∫0π(1−sin3 θ)dθ; (5) ∫6π2πcos2 udu; (6) ∫022−x2dx; (7) ∫−228−2y2dy; (8) ∫211x21−x2dx; (9) ∫0ax2a2−x2dx (a>0); (10) ∫13x21+x2dx; (11) ∫−115−4xxdx; (12) ∫141+xdx; (13) ∫4311−x−1dx; (14) ∫02a3a2−x2xdx (a>0); (15) ∫01te−2t2dt; (16) ∫1e2x1+ln xdx; (17) ∫−20x2+2x+2(x+2)dx; (18) ∫02(x2−2x+2)2xdx; (19) ∫−ππx4sin xdx; (20) ∫−2π2π4cos4 θdθ; (21) ∫−21211−x2(arcsin x)2dx; (22) ∫−55x4+2x2+1x3sin2 xdx; (23) ∫−2π2πcos xcos 2xdx; (24) ∫−2π2πcos x−cos3 xdx; (25) ∫0π1+cos 2xdx; (26) ∫02π∣sin(x+1)∣dx.
解:
( 1 ) ∫ π 3 π s i n ( x + π 3 ) d x = − [ c o s ( x + π 3 ) ] π 3 π = 0 ( 2 ) ∫ − 2 1 d x ( 11 + 5 x ) 3 = − 1 10 [ 1 ( 11 + 5 x ) 2 ] − 2 1 = 51 512 ( 3 ) ∫ 0 π 2 s i n φ c o s 3 φ d φ = − ∫ 0 π 2 c o s 3 φ d ( c o s φ ) = − [ 1 4 c o s 4 φ ] 0 π 2 = 1 4 ( 4 ) ∫ 0 π ( 1 − s i n 3 θ ) d θ = π + ∫ 0 π ( 1 − c o s 2 θ ) d ( c o s θ ) = π + [ c o s θ − 1 3 c o s 3 θ ] 0 π = π − 4 3 ( 5 ) ∫ π 6 π 2 c o s 2 u d u = ∫ π 6 π 2 c o s 2 u + 1 2 d u = 1 2 ∫ π 6 π 2 c o s 2 u d u + π 6 = 1 4 [ s i n 2 u ] π 6 π 2 + π 6 = − 3 8 + π 6 ( 6 ) 令 x = 2 s i n u ,得 ∫ 0 2 2 − x 2 d x = ∫ 0 π 2 2 c o s 2 u d u = ∫ 0 π 2 ( c o s 2 u + 1 ) d u = 1 2 ∫ 0 π 2 c o s 2 u d ( 2 u ) + π 2 = 1 2 [ s i n 2 u ] 0 π 2 + π 2 = π 2 ( 7 ) 令 y = 2 s i n u ,得 ∫ − 2 2 8 − 2 y 2 d y = ∫ − π 4 π 4 4 2 c o s 2 u d u = 2 2 ∫ − π 4 π 4 ( c o s 2 u + 1 ) d u = 2 ∫ − π 4 π 4 c o s 2 u d ( 2 u ) + 2 π = 2 [ s i n 2 u ] − π 4 π 4 + 2 π = 2 ( 2 + π ) ( 8 ) 令 x = s i n u ,得 ∫ 1 2 1 1 − x 2 x 2 d x = ∫ π 4 π 2 c o t 2 u d u = ∫ π 4 π 2 ( c s c 2 u − 1 ) d u = − [ c o t u ] π 4 π 2 − π 4 = 1 − π 4 ( 9 ) 令 x = a s i n u ,得 ∫ 0 a x 2 a 2 − x 2 d x = ∫ 0 π 2 a 4 s i n 2 u c o s 2 u d u = a 4 4 ∫ 0 π 2 s i n 2 2 u d u = a 4 8 ∫ 0 π 2 ( 1 − c o s 4 u ) d u = a 4 16 π − a 4 32 ∫ 0 π 2 c o s 4 u d ( 4 u ) = a 4 16 π − a 4 32 [ s i n 4 u ] 0 π 2 = a 4 16 π ( 10 ) 令 x = t a n u ,得 ∫ 1 3 d x x 2 1 + x 2 = ∫ π 4 π 3 s e c 2 u t a n 2 u 1 + t a n 2 u d u = ∫ π 4 π 3 c s c u c o t u d u = − [ c s c u ] π 4 π 3 = 2 − 2 3 3 ( 11 ) 令 u = 5 − 4 x ,则 x = 5 − u 2 4 , d x = − 1 2 u d u ,得 ∫ − 1 1 x d x 5 − 4 x = ∫ 3 1 5 − u 2 4 u ⋅ − 1 2 u d u = ∫ 3 1 u 2 − 5 8 d u = 1 8 ∫ 3 1 u 2 d u + 5 4 = 1 24 [ u 3 ] 3 1 + 5 4 = 1 6 ( 12 ) 令 u = 1 + x ,则 x = ( u − 1 ) 2 , d x = 2 ( u − 1 ) d u ,得 ∫ 1 4 d x 1 + x = ∫ 2 3 ( 2 − 2 u ) d u = 2 [ u ] 2 3 − 2 [ l n u ] 2 3 = 2 − 2 l n 3 2 ( 13 ) 令 u = 1 − x − 1 ,则 x = 1 − ( u + 1 ) 2 , d x = − 2 ( u + 1 ) d u ,得 ∫ 3 4 1 d x 1 − x − 1 = ∫ − 1 2 − 1 − 2 u − 2 u d u = 1 − 2 ∫ − 1 2 − 1 1 u d u = 1 − 2 l n 2 ( 14 ) 令 x = 3 a s i n u ,则 d x = 3 a c o s u d u ,得 ∫ 0 2 a x d x 3 a 2 − x 2 = ∫ 0 a r c s i n 6 3 3 a s i n u d u = − 3 a [ c o s u ] 0 a r c s i n 6 3 = ( 3 − 1 ) a ( 15 ) ∫ 0 1 t e − t 2 2 d t = [ − e − t 2 2 ] 0 1 = − e − 1 2 + 1 ( 16 ) ∫ 1 e 2 d x x 1 + l n x = [ 2 1 + l n x ] 1 e 2 = 2 3 − 2 ( 17 ) ∫ − 2 0 ( x + 2 ) d x x 2 + 2 x + 2 = ∫ − 2 0 ( x + 1 ) + 1 ( x + 1 ) 2 + 1 d x = [ 1 2 l n ( x 2 + 2 x + 2 ) + a r c t a n ( x + 1 ) ] − 2 0 = 1 2 l n 2 + π 4 − 1 2 l n 2 + π 4 = π 2 ( 18 ) 令 x = 1 + t a n u ,则 d x = s e c 2 u d u ,得 ∫ 0 2 x d x ( x 2 − 2 x + 2 ) 2 = ∫ 0 2 x d x [ ( x − 1 ) 2 + 1 ] 2 = ∫ − π 4 π 4 1 + t a n u s e c 2 u d u = 2 ∫ 0 π 4 c o s 2 u d u = ∫ 0 π 4 ( 1 + c o s 2 u ) d u = π 4 + 1 2 ( 19 ) 因为被积函数是奇函数,所以, ∫ − π π x 4 s i n x d x = 0 ( 20 ) 因为被积函数是偶函数,所以, ∫ − π 2 π 2 4 c o s 4 θ d θ = 2 ∫ 0 π 2 4 c o s 4 θ d θ = 8 ∫ 0 π 2 [ 3 8 θ + 1 4 s i n 2 θ + 1 32 s i n 4 θ ] 0 π 2 = 3 2 π ( 21 ) 因为被积函数是偶函数,所以, ∫ − 1 2 1 2 ( a r c s i n x ) 2 1 − x 2 d x = 2 ∫ 0 1 2 ( a r c s i n x ) 2 1 − x 2 d x = 2 ∫ 0 1 2 ( a r c s i n x ) 2 d ( a r c s i n x ) = 2 3 [ ( a r c s i n x ) 3 ] 0 1 2 = π 3 324 ( 22 ) 因为被积函数是奇函数,所以, ∫ − 5 5 x 3 s i n 2 x x 4 + 2 x 2 + 1 d x = 0 ( 23 ) ∫ − π 2 π 2 c o s x c o s 2 x d x = ∫ − π 2 π 2 c o s x ( 1 − 2 s i n 2 x ) d x = ∫ − π 2 π 2 ( 1 − 2 s i n 2 x ) d ( s i n x ) = [ s i n x − 2 3 s i n 3 x ] − π 2 π 2 = 2 3 ( 24 ) ∫ − π 2 π 2 c o s x − c o s 3 x d x = 2 ∫ 0 π 2 c o s x s i n x d x ,令 u = c o s x ,得 2 ∫ 0 π 2 c o s x s i n x d x = − 2 ∫ 1 0 u d u = 4 3 ( 25 ) ∫ 0 π 1 + c o s 2 x d x = ∫ 0 π 2 s i n x d x = 2 [ − c o s x ] 0 π = 2 2 ( 26 ) 令 x = u − 1 ,则 d x = d u ,得 ∫ 0 2 π ∣ s i n ( x + 1 ) ∣ d x = ∫ 1 2 π + 1 ∣ s i n u ∣ d u , 因为 ∣ s i n x ∣ 是以 π 为周期的周期函数,所以, ∫ 1 2 π + 1 ∣ s i n u ∣ d u = 2 ∫ 0 π ∣ s i n u ∣ d u = 4 \begin{aligned} &\ \ (1)\ \int_{\frac{\pi}{3}}^{\pi}sin\left(x+\frac{\pi}{3}\right)dx=-\left[cos(x+\frac{\pi}{3})\right]_{\frac{\pi}{3}}^{\pi}=0\\\\ &\ \ (2)\ \int_{-2}^{1}\frac{dx}{(11+5x)^3}=-\frac{1}{10}\left[\frac{1}{(11+5x)^2}\right]_{-2}^{1}=\frac{51}{512}\\\\ &\ \ (3)\ \int_{0}^{\frac{\pi}{2}}sin \varphi cos^3\ \varphi d\varphi=-\int_{0}^{\frac{\pi}{2}}cos^3\ \varphi d(cos\ \varphi)=-\left[\frac{1}{4}cos^4\ \varphi\right]_{0}^{\frac{\pi}{2}}=\frac{1}{4}\\\\ &\ \ (4)\ \int_{0}^{\pi}(1-sin^3\ \theta) d\theta=\pi+\int_{0}^{\pi}(1-cos^2\ \theta)d(cos\ \theta)=\pi+\left[cos\ \theta-\frac{1}{3}cos^3\ \theta\right]_{0}^{\pi}=\pi-\frac{4}{3}\\\\ &\ \ (5)\ \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}cos^2\ udu=\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\frac{cos\ 2u+1}{2}du=\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}cos\ 2udu+\frac{\pi}{6}=\frac{1}{4}\left[sin\ 2u\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}+\frac{\pi}{6}=-\frac{\sqrt{3}}{8}+\frac{\pi}{6}\\\\ &\ \ (6)\ 令x=\sqrt{2}sin\ u,得\int_{0}^{\sqrt{2}}\sqrt{2-x^2}dx=\int_{0}^{\frac{\pi}{2}}2cos^2\ udu=\int_{0}^{\frac{\pi}{2}}(cos\ 2u+1)du=\frac{1}{2}\int_{0}^{\frac{\pi}{2}}cos\ 2ud(2u)+\frac{\pi}{2}=\\\\ &\ \ \ \ \ \ \ \ \ \frac{1}{2}[sin\ 2u]_{0}^{\frac{\pi}{2}}+\frac{\pi}{2}=\frac{\pi}{2}\\\\ &\ \ (7)\ 令y=2sin\ u,得\int_{-\sqrt{2}}^{\sqrt{2}}\sqrt{8-2y^2}dy=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}4\sqrt{2}cos^2\ udu=2\sqrt{2}\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}(cos\ 2u+1)du=\\\\ &\ \ \ \ \ \ \ \ \ \sqrt{2}\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}cos\ 2ud(2u)+\sqrt{2}\pi=\sqrt{2}[sin\ 2u]_{-\frac{\pi}{4}}^{\frac{\pi}{4}}+\sqrt{2}\pi=\sqrt{2}(2+\pi)\\\\ &\ \ (8)\ 令x=sin\ u,得\int_{\frac{1}{\sqrt{2}}}^{1}\frac{\sqrt{1-x^2}}{x^2}dx=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}cot^2\ udu=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(csc^2\ u-1)du=-[cot\ u]_{\frac{\pi}{4}}^{\frac{\pi}{2}}-\frac{\pi}{4}=1-\frac{\pi}{4}\\\\ &\ \ (9)\ 令x=asin \ u,得\int_{0}^{a}x^2\sqrt{a^2-x^2}dx=\int_{0}^{\frac{\pi}{2}}a^4sin^2\ ucos^2\ udu=\frac{a^4}{4}\int_{0}^{\frac{\pi}{2}}sin^2\ 2udu=\\\\ &\ \ \ \ \ \ \ \ \ \frac{a^4}{8}\int_{0}^{\frac{\pi}{2}}(1-cos\ 4u)du=\frac{a^4}{16}\pi-\frac{a^4}{32}\int_{0}^{\frac{\pi}{2}}cos\ 4ud(4u)=\frac{a^4}{16}\pi-\frac{a^4}{32}[sin\ 4u]_{0}^{\frac{\pi}{2}}=\frac{a^4}{16}\pi\\\\ &\ \ (10)\ 令x=tan\ u,得\int_{1}^{\sqrt{3}}\frac{dx}{x^2\sqrt{1+x^2}}=\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{sec^2\ u}{tan^2\ u\sqrt{1+tan^2\ u}}du=\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}csc\ ucot\ udu=-[csc\ u]_{\frac{\pi}{4}}^{\frac{\pi}{3}}=\sqrt{2}-\frac{2\sqrt{3}}{3}\\\\ &\ \ (11)\ 令u=\sqrt{5-4x},则x=\frac{5-u^2}{4},dx=-\frac{1}{2}udu,得\int_{-1}^{1}\frac{xdx}{\sqrt{5-4x}}=\int_{3}^{1}\frac{5-u^2}{4u}\cdot -\frac{1}{2}udu=\\\\ &\ \ \ \ \ \ \ \ \ \ \int_{3}^{1}\frac{u^2-5}{8}du=\frac{1}{8}\int_{3}^{1}u^2du+\frac{5}{4}=\frac{1}{24}[u^3]_{3}^{1}+\frac{5}{4}=\frac{1}{6}\\\\ &\ \ (12)\ 令u=1+\sqrt{x},则x=(u-1)^2,dx=2(u-1)du,得\int_{1}^{4}\frac{dx}{1+\sqrt{x}}=\int_{2}^{3}\left(2-\frac{2}{u}\right)du=\\\\ &\ \ \ \ \ \ \ \ \ \ \ 2[u]_{2}^{3}-2[ln\ u]_{2}^{3}=2-2ln\ \frac{3}{2}\\\\ &\ \ (13)\ 令u=\sqrt{1-x}-1,则x=1-(u+1)^2,dx=-2(u+1)du,得\int_{\frac{3}{4}}^{1}\frac{dx}{\sqrt{1-x}-1}=\\\\ &\ \ \ \ \ \ \ \ \ \ \int_{-\frac{1}{2}}^{-1}\frac{-2u-2}{u}du=1-2\int_{-\frac{1}{2}}^{-1}\frac{1}{u}du=1-2ln\ 2\\\\ &\ \ (14)\ 令x=\sqrt{3}asin\ u,则dx=\sqrt{3}acos\ udu,得\int_{0}^{\sqrt{2}a}\frac{xdx}{\sqrt{3a^2-x^2}}=\int_{0}^{arcsin\ \frac{\sqrt{6}}{3}}\sqrt{3}asin\ udu=\\\\ &\ \ \ \ \ \ \ \ \ \ -\sqrt{3}a[cos\ u]_{0}^{arcsin\ \frac{\sqrt{6}}{3}}=(\sqrt{3}-1)a\\\\ &\ \ (15)\ \int_{0}^{1}te^{-\frac{t^2}{2}}dt=[-e^{-\frac{t^2}{2}}]_{0}^{1}=-e^{-\frac{1}{2}}+1\\\\ &\ \ (16)\ \int_{1}^{e^2}\frac{dx}{x\sqrt{1+ln\ x}}=[2\sqrt{1+ln\ x}]_{1}^{e^2}=2\sqrt{3}-2\\\\ &\ \ (17)\ \int_{-2}^{0}\frac{(x+2)dx}{x^2+2x+2}=\int_{-2}^{0}\frac{(x+1)+1}{(x+1)^2+1}dx=\left[\frac{1}{2}ln(x^2+2x+2)+arctan(x+1)\right]_{-2}^{0}=\frac{1}{2}ln\ 2+\frac{\pi}{4}-\frac{1}{2}ln\ 2+\frac{\pi}{4}=\frac{\pi}{2}\\\\ &\ \ (18)\ 令x=1+tan\ u,则dx=sec^2\ udu,得\int_{0}^{2}\frac{xdx}{(x^2-2x+2)^2}=\int_{0}^{2}\frac{xdx}{[(x-1)^2+1]^2}=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\frac{1+tan\ u}{sec^2\ u}du=\\\\ &\ \ \ \ \ \ \ \ \ \ \ 2\int_{0}^{\frac{\pi}{4}}cos^2\ udu=\int_{0}^{\frac{\pi}{4}}(1+cos\ 2u)du=\frac{\pi}{4}+\frac{1}{2}\\\\ &\ \ (19)\ 因为被积函数是奇函数,所以,\int_{-\pi}^{\pi}x^4sin\ xdx=0\\\\ &\ \ (20)\ 因为被积函数是偶函数,所以,\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}4cos^4\ \theta d\theta=2\int_{0}^{\frac{\pi}{2}}4cos^4\ \theta d\theta=8\int_{0}^{\frac{\pi}{2}}\left[\frac{3}{8}\theta+\frac{1}{4}sin\ 2\theta+\frac{1}{32}sin\ 4\theta\right]_{0}^{\frac{\pi}{2}}=\frac{3}{2}\pi\\\\ &\ \ (21)\ 因为被积函数是偶函数,所以,\int_{-\frac{1}{2}}^{\frac{1}{2}}\frac{(arcsin\ x)^2}{\sqrt{1-x^2}}dx=2\int_{0}^{\frac{1}{2}}\frac{(arcsin\ x)^2}{\sqrt{1-x^2}}dx=\\\\ &\ \ \ \ \ \ \ \ \ \ \ 2\int_{0}^{\frac{1}{2}}(arcsin\ x)^2d(arcsin\ x)=\frac{2}{3}[(arcsin\ x)^3]_{0}^{\frac{1}{2}}=\frac{\pi^3}{324}\\\\ &\ \ (22)\ 因为被积函数是奇函数,所以,\int_{-5}^{5}\frac{x^3sin^2\ x}{x^4+2x^2+1}dx=0\\\\ &\ \ (23)\ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}cos\ xcos\ 2xdx=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}cos\ x(1-2sin^2\ x)dx=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(1-2sin^2\ x)d(sin\ x)=\left[sin\ x-\frac{2}{3}sin^3\ x\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}=\frac{2}{3}\\\\ &\ \ (24)\ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sqrt{cos\ x-cos^3\ x}dx=2\int_{0}^{\frac{\pi}{2}}\sqrt{cos\ x}sin\ xdx,令u=cos\ x,得2\int_{0}^{\frac{\pi}{2}}\sqrt{cos\ x}sin\ xdx=-2\int_{1}^{0}\sqrt{u}du=\frac{4}{3}\\\\ &\ \ (25)\ \int_{0}^{\pi}\sqrt{1+cos\ 2x}dx=\int_{0}^{\pi}\sqrt{2}sin\ xdx=\sqrt{2}[-cos\ x]_{0}^{\pi}=2\sqrt{2}\\\\ &\ \ (26)\ 令x=u-1,则dx=du,得\int_{0}^{2\pi}|sin(x+1)|dx=\int_{1}^{2\pi+1}|sin\ u|du,\\\\ &\ \ \ \ \ \ \ \ \ \ 因为|sin\ x|是以\pi为周期的周期函数,所以,\int_{1}^{2\pi+1}|sin\ u|du=2\int_{0}^{\pi}|sin\ u|du=4 & \end{aligned} (1) ∫3ππsin(x+3π)dx=−[cos(x+3π)]3ππ=0 (2) ∫−21(11+5x)3dx=−101[(11+5x)21]−21=51251 (3) ∫02πsinφcos3 φdφ=−∫02πcos3 φd(cos φ)=−[41cos4 φ]02π=41 (4) ∫0π(1−sin3 θ)dθ=π+∫0π(1−cos2 θ)d(cos θ)=π+[cos θ−31cos3 θ]0π=π−34 (5) ∫6π2πcos2 udu=∫6π2π2cos 2u+1du=21∫6π2πcos 2udu+6π=41[sin 2u]6π2π+6π=−83+6π (6) 令x=2sin u,得∫022−x2dx=∫02π2cos2 udu=∫02π(cos 2u+1)du=21∫02πcos 2ud(2u)+2π= 21[sin 2u]02π+2π=2π (7) 令y=2sin u,得∫−228−2y2dy=∫−4π4π42cos2 udu=22∫−4π4π(cos 2u+1)du= 2∫−4π4πcos 2ud(2u)+2π=2[sin 2u]−4π4π+2π=2(2+π) (8) 令x=sin u,得∫211x21−x2dx=∫4π2πcot2 udu=∫4π2π(csc2 u−1)du=−[cot u]4π2π−4π=1−4π (9) 令x=asin u,得∫0ax2a2−x2dx=∫02πa4sin2 ucos2 udu=4a4∫02πsin2 2udu= 8a4∫02π(1−cos 4u)du=16a4π−32a4∫02πcos 4ud(4u)=16a4π−32a4[sin 4u]02π=16a4π (10) 令x=tan u,得∫13x21+x2dx=∫4π3πtan2 u1+tan2 usec2 udu=∫4π3πcsc ucot udu=−[csc u]4π3π=2−323 (11) 令u=5−4x,则x=45−u2,dx=−21udu,得∫−115−4xxdx=∫314u5−u2⋅−21udu= ∫318u2−5du=81∫31u2du+45=241[u3]31+45=61 (12) 令u=1+x,则x=(u−1)2,dx=2(u−1)du,得∫141+xdx=∫23(2−u2)du= 2[u]23−2[ln u]23=2−2ln 23 (13) 令u=1−x−1,则x=1−(u+1)2,dx=−2(u+1)du,得∫4311−x−1dx= ∫−21−1u−2u−2du=1−2∫−21−1u1du=1−2ln 2 (14) 令x=3asin u,则dx=3acos udu,得∫02a3a2−x2xdx=∫0arcsin 363asin udu= −3a[cos u]0arcsin 36=(3−1)a (15) ∫01te−2t2dt=[−e−2t2]01=−e−21+1 (16) ∫1e2x1+ln xdx=[21+ln x]1e2=23−2 (17) ∫−20x2+2x+2(x+2)dx=∫−20(x+1)2+1(x+1)+1dx=[21ln(x2+2x+2)+arctan(x+1)]−20=21ln 2+4π−21ln 2+4π=2π (18) 令x=1+tan u,则dx=sec2 udu,得∫02(x2−2x+2)2xdx=∫02[(x−1)2+1]2xdx=∫−4π4πsec2 u1+tan udu= 2∫04πcos2 udu=∫04π(1+cos 2u)du=4π+21 (19) 因为被积函数是奇函数,所以,∫−ππx4sin xdx=0 (20) 因为被积函数是偶函数,所以,∫−2π2π4cos4 θdθ=2∫02π4cos4 θdθ=8∫02π[83θ+41sin 2θ+321sin 4θ]02π=23π (21) 因为被积函数是偶函数,所以,∫−21211−x2(arcsin x)2dx=2∫0211−x2(arcsin x)2dx= 2∫021(arcsin x)2d(arcsin x)=32[(arcsin x)3]021=324π3 (22) 因为被积函数是奇函数,所以,∫−55x4+2x2+1x3sin2 xdx=0 (23) ∫−2π2πcos xcos 2xdx=∫−2π2πcos x(1−2sin2 x)dx=∫−2π2π(1−2sin2 x)d(sin x)=[sin x−32sin3 x]−2π2π=32 (24) ∫−2π2πcos x−cos3 xdx=2∫02πcos xsin xdx,令u=cos x,得2∫02πcos xsin xdx=−2∫10udu=34 (25) ∫0π1+cos 2xdx=∫0π2sin xdx=2[−cos x]0π=22 (26) 令x=u−1,则dx=du,得∫02π∣sin(x+1)∣dx=∫12π+1∣sin u∣du, 因为∣sin x∣是以π为周期的周期函数,所以,∫12π+1∣sin u∣du=2∫0π∣sin u∣du=4
2. 设 f ( x ) 在 [ a , b ] 上连续,证明: ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x . \begin{aligned}&2. \ 设f(x)在[a, \ b]上连续,证明:\int_{a}^{b}f(x)dx=\int_{a}^{b}f(a+b-x)dx.&\end{aligned} 2. 设f(x)在[a, b]上连续,证明:∫abf(x)dx=∫abf(a+b−x)dx.
解:
令 x = a + b − u ,得 ∫ a b f ( x ) d x = − ∫ b a f ( a + b − u ) d u = ∫ a b f ( a + b − u ) d u = ∫ a b f ( a + b − x ) d x \begin{aligned} &\ \ 令x=a+b-u,得\int_{a}^{b}f(x)dx=-\int_{b}^{a}f(a+b-u)du=\int_{a}^{b}f(a+b-u)du=\int_{a}^{b}f(a+b-x)dx & \end{aligned} 令x=a+b−u,得∫abf(x)dx=−∫baf(a+b−u)du=∫abf(a+b−u)du=∫abf(a+b−x)dx
3. 证明: ∫ x 1 d t 1 + t 2 = ∫ 1 1 x d t 1 + t 2 ( x > 0 ) . \begin{aligned}&3. \ 证明:\int_{x}^{1}\frac{dt}{1+t^2}=\int_{1}^{\frac{1}{x}}\frac{dt}{1+t^2}\ (x \gt 0).&\end{aligned} 3. 证明:∫x11+t2dt=∫1x11+t2dt (x>0).
解:
令 u = 1 t ,则 t = 1 u , d t = − 1 u 2 ,得 ∫ x 1 d t 1 + t 2 = − ∫ 1 x 1 d u 1 + u 2 = ∫ 1 1 x d u 1 + u 2 = ∫ 1 1 x d t 1 + t 2 \begin{aligned} &\ \ 令u=\frac{1}{t},则t=\frac{1}{u},dt=-\frac{1}{u^2},得\int_{x}^{1}\frac{dt}{1+t^2}=-\int_{\frac{1}{x}}^{1}\frac{du}{1+u^2}=\int_{1}^{\frac{1}{x}}\frac{du}{1+u^2}=\int_{1}^{\frac{1}{x}}\frac{dt}{1+t^2} & \end{aligned} 令u=t1,则t=u1,dt=−u21,得∫x11+t2dt=−∫x111+u2du=∫1x11+u2du=∫1x11+t2dt