高等数学(第七版)同济大学 习题11-4 个人解答

高等数学(第七版)同济大学 习题11-4

函数作图软件:Mathematica

 

1.  设有一分布着质量的曲面 Σ ,在点 ( x ,   y ,   z ) 处它的面密度为 μ ( x ,   y ,   z ) ,用对面积的曲面积分表示这     曲面对于 x 轴的转动惯量 . \begin{aligned}&1. \ 设有一分布着质量的曲面\Sigma,在点(x, \ y, \ z)处它的面密度为\mu(x, \ y, \ z),用对面积的曲面积分表示这\\\\&\ \ \ \ 曲面对于x轴的转动惯量.&\end{aligned} 1. 设有一分布着质量的曲面Σ,在点(x, y, z)处它的面密度为μ(x, y, z),用对面积的曲面积分表示这    曲面对于x轴的转动惯量.
解:

  将 Σ 分成 n 小块,取出其中任意一块记作 d S , ( x ,   y ,   z ) 为 d S 上一点,则 d S 对 x 轴的转动惯量近似等于    d I x = ( y 2 + z 2 ) μ ( x ,   y ,   z ) d S ,以此作为转动惯量元素并积分,则 Σ 对 x 轴的转动惯量为    I x = ∬ Σ ( y 2 + z 2 ) μ ( x ,   y ,   z ) d S . \begin{aligned} &\ \ 将\Sigma分成n小块,取出其中任意一块记作dS,(x,\ y, \ z)为dS上一点,则dS对x轴的转动惯量近似等于\\\\ &\ \ dI_x=(y^2+z^2)\mu(x, \ y, \ z)dS,以此作为转动惯量元素并积分,则\Sigma对x轴的转动惯量为\\\\ &\ \ I_x=\iint_{\Sigma}(y^2+z^2)\mu(x, \ y, \ z)dS. & \end{aligned}   Σ分成n小块,取出其中任意一块记作dS(x, y, z)dS上一点,则dSx轴的转动惯量近似等于  dIx=(y2+z2)μ(x, y, z)dS,以此作为转动惯量元素并积分,则Σx轴的转动惯量为  Ix=Σ(y2+z2)μ(x, y, z)dS.


2.  按对面积的曲面积分的定义证明公式 ∬ Σ f ( x ,   y ,   z ) d S = ∬ Σ 1 f ( x ,   y ,   z ) d S + ∬ Σ 2 f ( x ,   y ,   z ) d S ,     其中 Σ 是由 Σ 1 和 Σ 2 组成的 . \begin{aligned}&2. \ 按对面积的曲面积分的定义证明公式\iint_{\Sigma}f(x, \ y, \ z)dS=\iint_{\Sigma_1}f(x, \ y, \ z)dS+\iint_{\Sigma_2}f(x, \ y, \ z)dS,\\\\&\ \ \ \ 其中\Sigma是由\Sigma_1和\Sigma_2组成的.&\end{aligned} 2. 按对面积的曲面积分的定义证明公式Σf(x, y, z)dS=Σ1f(x, y, z)dS+Σ2f(x, y, z)dS    其中Σ是由Σ1Σ2组成的.
解:

  因为 f ( x ,   y ,   z ) 在曲面 Σ 上可积,所以不论 Σ 如何分割,积分和的极限总是不变的,因此可以使 Σ 1 和 Σ 2 的公共边界   曲线作为一条分割线,则 f ( x ,   y ,   z ) 在 Σ = Σ 1 + Σ 2 上的积分和等于 Σ 1 上的积分和加上 Σ 2 上的积分和,记为    ∑ ( Σ 1 + Σ 2 ) f ( ξ i ,   η i ,   ζ i ) Δ S i = ∑ ( Σ 1 ) f ( ξ i ,   η i ,   ζ i ) Δ S i + ∑ ( Σ 2 ) f ( ξ i ,   η i ,   ζ i ) Δ S i ,令 λ = m a x { Δ S i 的直径 } → 0 ,   上式两端取极限,得 ∬ Σ f ( x ,   y ,   z ) d S = ∬ Σ 1 f ( x ,   y ,   z ) d S + ∬ Σ 2 f ( x ,   y ,   z ) d S . \begin{aligned} &\ \ 因为f(x, \ y, \ z)在曲面\Sigma上可积,所以不论\Sigma如何分割,积分和的极限总是不变的,因此可以使\Sigma_1和\Sigma_2的公共边界\\\\ &\ \ 曲线作为一条分割线,则f(x, \ y, \ z)在\Sigma=\Sigma_1+\Sigma_2上的积分和等于\Sigma_1上的积分和加上\Sigma_2上的积分和,记为\\\\ &\ \ \sum_{(\Sigma_1+\Sigma_2)}f(\xi_i, \ \eta_i, \ \zeta_i)\Delta S_i=\sum_{(\Sigma_1)}f(\xi_i, \ \eta_i, \ \zeta_i)\Delta S_i+\sum_{(\Sigma_2)}f(\xi_i, \ \eta_i, \ \zeta_i)\Delta S_i,令\lambda=max\{\Delta S_i的直径\} \rightarrow 0,\\\\ &\ \ 上式两端取极限,得\iint_{\Sigma}f(x, \ y, \ z)dS=\iint_{\Sigma_1}f(x, \ y, \ z)dS+\iint_{\Sigma_2}f(x, \ y, \ z)dS. & \end{aligned}   因为f(x, y, z)在曲面Σ上可积,所以不论Σ如何分割,积分和的极限总是不变的,因此可以使Σ1Σ2的公共边界  曲线作为一条分割线,则f(x, y, z)Σ=Σ1+Σ2上的积分和等于Σ1上的积分和加上Σ2上的积分和,记为  (Σ1+Σ2)f(ξi, ηi, ζi)ΔSi=(Σ1)f(ξi, ηi, ζi)ΔSi+(Σ2)f(ξi, ηi, ζi)ΔSi,令λ=max{ΔSi的直径}0  上式两端取极限,得Σf(x, y, z)dS=Σ1f(x, y, z)dS+Σ2f(x, y, z)dS.


3.  当 Σ 是 x O y 面内的一个闭区域时,曲面积分 ∬ Σ f ( x ,   y ,   z ) d S 与二重积分有什么关系? \begin{aligned}&3. \ 当\Sigma是xOy面内的一个闭区域时,曲面积分\iint_{\Sigma}f(x, \ y, \ z)dS与二重积分有什么关系?&\end{aligned} 3. ΣxOy面内的一个闭区域时,曲面积分Σf(x, y, z)dS与二重积分有什么关系?
解:

  当 Σ 为 x O y 面内的一个闭区域时, Σ 的方程为 z = 0 ,因此在 Σ 上取值的 f ( x ,   y ,   z ) 为 f ( x ,   y ,   0 ) ,且    d S = 1 + ( ∂ z ∂ x ) 2 + ( ∂ z ∂ y ) 2 d x d y = d x d y ,又因 Σ 在 x O y 面上的投影区域为 Σ 本身,因此    ∬ Σ f ( x ,   y ,   z ) d S = ∬ Σ f ( x ,   y ,   0 ) d x d y . \begin{aligned} &\ \ 当\Sigma为xOy面内的一个闭区域时,\Sigma的方程为z=0,因此在\Sigma上取值的f(x,\ y, \ z)为f(x, \ y, \ 0),且\\\\ &\ \ dS=\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^2+\left(\frac{\partial z}{\partial y}\right)^2}dxdy=dxdy,又因\Sigma在xOy面上的投影区域为\Sigma本身,因此\\\\ &\ \ \iint_{\Sigma}f(x, \ y, \ z)dS=\iint_{\Sigma}f(x, \ y, \ 0)dxdy. & \end{aligned}   ΣxOy面内的一个闭区域时,Σ的方程为z=0,因此在Σ上取值的f(x, y, z)f(x, y, 0),且  dS=1+(xz)2+(yz)2 dxdy=dxdy,又因ΣxOy面上的投影区域为Σ本身,因此  Σf(x, y, z)dS=Σf(x, y, 0)dxdy.


4.  计算曲面积分 ∬ Σ f ( x ,   y ,   z ) d S ,其中 Σ 为抛物面 z = 2 − ( x 2 + y 2 ) 在 x O y 面上方的部分,      f ( x ,   y ,   z ) 分别如下: \begin{aligned}&4. \ 计算曲面积分\iint_{\Sigma}f(x, \ y, \ z)dS,其中\Sigma为抛物面z=2-(x^2+y^2)在xOy面上方的部分,\\\\&\ \ \ \ f(x, \ y, \ z)分别如下:&\end{aligned} 4. 计算曲面积分Σf(x, y, z)dS,其中Σ为抛物面z=2(x2+y2)xOy面上方的部分,    f(x, y, z)分别如下:

   ( 1 )    f ( x ,   y ,   z ) = 1 ;                     ( 2 )    f ( x ,   y ,   z ) = x 2 + y 2 ;    ( 3 )    f ( x ,   y ,   z ) = 3 z . \begin{aligned} &\ \ (1)\ \ f(x,\ y, \ z)=1;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ f(x, \ y, \ z)=x^2+y^2;\\\\ &\ \ (3)\ \ f(x, \ y, \ z)=3z. & \end{aligned}   (1)  f(x, y, z)=1                    (2)  f(x, y, z)=x2+y2  (3)  f(x, y, z)=3z.

解:

  抛物面 Σ 与 x O y 面的交线为 x 2 + y 2 = 2 ,因此 Σ 在 x O y 面上的投影区域 D x y = { ( x ,   y )   ∣   x 2 + y 2 ≤ 2 } ,    d S = 1 + z x 2 + z y 2 d x d y = 1 + 4 x 2 + 4 y 2 d x d y .    ( 1 )   ∬ Σ 1 ⋅ d S = ∬ D x y 1 + 4 x 2 + 4 y 2 d x d y ,转换为极坐标形式,          ∬ D x y 1 + 4 x 2 + 4 y 2 d x d y = ∬ D x y 1 + 4 ρ 2 ρ d ρ d θ = ∫ 0 2 π d θ ∫ 0 2 1 + 4 ρ 2 ρ d ρ = 2 π [ 1 12 ( 1 + 4 ρ 2 ) 3 2 ] 0 2 = 26 6 π .    ( 2 )   ∬ Σ ( x 2 + y 2 ) d S = ∬ D x y ( x 2 + y 2 ) 1 + 4 x 2 + 4 y 2 d x d y ,转换为极坐标形式,          ∬ D x y ( x 2 + y 2 ) 1 + 4 x 2 + 4 y 2 d x d y = ∬ D x y ρ 2 1 + 4 ρ 2 ρ d ρ d θ = ∫ 0 2 π d θ ∫ 0 2 ρ 3 1 + 4 ρ 2 d ρ ,令 ρ = 1 2 t a n   t ,         则上式 = 2 π ⋅ 1 16 ∫ 0 a r c t a n   2 2 s e c 3   t ⋅ t a n 3 t d t = π 8 ∫ 0 a r c t a n   2 2 s e c 2   t ( s e c 2   t − 1 ) d ( s e c   t ) = π 8 ⋅ 596 15 = 149 30 π .    ( 3 )   ∬ Σ 3 z d S = 3 ∬ D x y [ 2 − ( x 2 + y 2 ) ] 1 + 4 x 2 + 4 y 2 d x d y ,转换为极坐标形式,          3 ∬ D x y [ 2 − ( x 2 + y 2 ) ] 1 + 4 x 2 + 4 y 2 d x d y = 3 ∬ D x y ( 2 − ρ 2 ) 1 + 4 ρ 2 ρ d ρ d θ =          3 ∫ 0 2 π d θ ∫ 0 2 ( 2 − ρ 2 ) 1 + 4 ρ 2 ρ d ρ ,         令 ρ = 1 2 t a n   t ,上式 = 6 π ( 1 2 ∫ 0 a r c t a n   2 2 s e c 3   t ⋅ t a n   t d t − 1 16 ∫ 0 a r c t a n   2 2 s e c 3   t ⋅ t a n 3   t d t ) =          6 π [ 1 2 ∫ 0 a r c t a n   2 2 s e c 2   t d ( s e c   t ) − 1 16 ∫ 0 a r c t a n   2 2 s e c 2   t ( s e c 2   t − 1 ) d ( s e c   t ) ] = 6 π ( 13 3 − 149 60 ) = 111 10 π . \begin{aligned} &\ \ 抛物面\Sigma与xOy面的交线为x^2+y^2=2,因此\Sigma在xOy面上的投影区域D_{xy}=\{(x, \ y)\ |\ x^2+y^2 \le 2\},\\\\ &\ \ dS=\sqrt{1+z_x^2+z_y^2}dxdy=\sqrt{1+4x^2+4y^2}dxdy.\\\\ &\ \ (1)\ \iint_{\Sigma}1\cdot dS=\iint_{D_{xy}}\sqrt{1+4x^2+4y^2}dxdy,转换为极坐标形式,\\\\ &\ \ \ \ \ \ \ \ \iint_{D_{xy}}\sqrt{1+4x^2+4y^2}dxdy=\iint_{D_{xy}}\sqrt{1+4\rho^2}\rho d\rho d\theta=\int_{0}^{2\pi}d\theta \int_{0}^{\sqrt{2}}\sqrt{1+4\rho^2}\rho d\rho=2\pi \left[\frac{1}{12}(1+4\rho^2)^{\frac{3}{2}}\right]_{0}^{\sqrt{2}}=\frac{26}{6}\pi.\\\\ &\ \ (2)\ \iint_{\Sigma}(x^2+y^2)dS=\iint_{D_{xy}}(x^2+y^2)\sqrt{1+4x^2+4y^2}dxdy,转换为极坐标形式,\\\\ &\ \ \ \ \ \ \ \ \iint_{D_{xy}}(x^2+y^2)\sqrt{1+4x^2+4y^2}dxdy=\iint_{D_{xy}}\rho^2\sqrt{1+4\rho^2}\rho d\rho d\theta=\int_{0}^{2\pi}d\theta \int_{0}^{\sqrt{2}}\rho^3\sqrt{1+4\rho^2}d\rho,令\rho=\frac{1}{2}tan\ t,\\\\ &\ \ \ \ \ \ \ \ 则上式=2\pi \cdot \frac{1}{16}\int_{0}^{arctan\ 2\sqrt{2}}sec^3\ t\cdot tan^3 tdt=\frac{\pi}{8}\int_{0}^{arctan\ 2\sqrt{2}}sec^2\ t(sec^2\ t-1)d(sec\ t)=\frac{\pi}{8}\cdot \frac{596}{15}=\frac{149}{30}\pi.\\\\ &\ \ (3)\ \iint_{\Sigma}3zdS=3\iint_{D_{xy}}[2-(x^2+y^2)]\sqrt{1+4x^2+4y^2}dxdy,转换为极坐标形式,\\\\ &\ \ \ \ \ \ \ \ 3\iint_{D_{xy}}[2-(x^2+y^2)]\sqrt{1+4x^2+4y^2}dxdy=3\iint_{D_{xy}}(2-\rho^2)\sqrt{1+4\rho^2}\rho d\rho d\theta=\\\\ &\ \ \ \ \ \ \ \ 3\int_{0}^{2\pi}d\theta \int_{0}^{\sqrt{2}}(2-\rho^2)\sqrt{1+4\rho^2}\rho d\rho,\\\\ &\ \ \ \ \ \ \ \ 令\rho=\frac{1}{2}tan\ t,上式=6\pi \left(\frac{1}{2}\int_{0}^{arctan\ 2\sqrt{2}}sec^3\ t\cdot tan\ tdt-\frac{1}{16}\int_{0}^{arctan\ 2\sqrt{2}}sec^3\ t\cdot tan^3\ tdt\right)=\\\\ &\ \ \ \ \ \ \ \ 6\pi\left[\frac{1}{2}\int_{0}^{arctan\ 2\sqrt{2}}sec^2\ td(sec\ t)-\frac{1}{16}\int_{0}^{arctan\ 2\sqrt{2}}sec^2\ t(sec^2\ t-1)d(sec\ t)\right]=6\pi \left(\frac{13}{3}-\frac{149}{60}\right)=\frac{111}{10}\pi. & \end{aligned}   抛物面ΣxOy面的交线为x2+y2=2,因此ΣxOy面上的投影区域Dxy={(x, y)  x2+y22}  dS=1+zx2+zy2 dxdy=1+4x2+4y2 dxdy.  (1) Σ1dS=Dxy1+4x2+4y2 dxdy,转换为极坐标形式,        Dxy1+4x2+4y2 dxdy=Dxy1+4ρ2 ρdρdθ=02πdθ02 1+4ρ2 ρdρ=2π[121(1+4ρ2)23]02 =626π.  (2) Σ(x2+y2)dS=Dxy(x2+y2)1+4x2+4y2 dxdy,转换为极坐标形式,        Dxy(x2+y2)1+4x2+4y2 dxdy=Dxyρ21+4ρ2 ρdρdθ=02πdθ02 ρ31+4ρ2 dρ,令ρ=21tan t        则上式=2π1610arctan 22 sec3 ttan3tdt=8π0arctan 22 sec2 t(sec2 t1)d(sec t)=8π15596=30149π.  (3) Σ3zdS=3Dxy[2(x2+y2)]1+4x2+4y2 dxdy,转换为极坐标形式,        3Dxy[2(x2+y2)]1+4x2+4y2 dxdy=3Dxy(2ρ2)1+4ρ2 ρdρdθ=        302πdθ02 (2ρ2)1+4ρ2 ρdρ        ρ=21tan t,上式=6π(210arctan 22 sec3 ttan tdt1610arctan 22 sec3 ttan3 tdt)=        6π[210arctan 22 sec2 td(sec t)1610arctan 22 sec2 t(sec2 t1)d(sec t)]=6π(31360149)=10111π.


5.  计算 ∬ Σ ( x 2 + y 2 ) d S ,其中 Σ 是 \begin{aligned}&5. \ 计算\iint_{\Sigma}(x^2+y^2)dS,其中\Sigma是&\end{aligned} 5. 计算Σ(x2+y2)dS,其中Σ

   ( 1 )   锥面 z = x 2 + y 2 及平面 z = 1 所围成的区域的整个边界曲面;    ( 2 )   锥面 z 2 = 3 ( x 2 + y 2 ) 被平面 z = 0 和 z = 3 所截得的部分 . \begin{aligned} &\ \ (1)\ \ 锥面z=\sqrt{x^2+y^2}及平面z=1所围成的区域的整个边界曲面;\\\\ &\ \ (2)\ \ 锥面z^2=3(x^2+y^2)被平面z=0和z=3所截得的部分. & \end{aligned}   (1)  锥面z=x2+y2 及平面z=1所围成的区域的整个边界曲面;  (2)  锥面z2=3(x2+y2)被平面z=0z=3所截得的部分.

解:

   ( 1 )   Σ 由 Σ 1 和 Σ 2 组成, Σ 1 为平面 z = 1 上被圆周 x 2 + y 2 = 1 所围的部分, Σ 2 为锥面 z = x 2 + y 2   ( 0 ≤ z ≤ 1 ) ,         在 Σ 1 上, d S = d x d y ,在 Σ 2 上, d S = 1 + z x 2 + z y 2 d x d y = 2 d x d y , Σ 1 和 Σ 2 在 x O y 面上的投影区域          D x y 为 x 2 + y 2 ≤ 1 ,因此 ∬ Σ ( x 2 + y 2 ) d S = ∬ Σ 1 ( x 2 + y 2 ) d S + ∬ Σ 2 ( x 2 + y 2 ) d S =          ∬ D x y ( x 2 + y 2 ) d x d y + ∬ D x y ( x 2 + y 2 ) 2 d x d y ,转换为极坐标形式,上式 =          ∫ 0 2 π d θ ∫ 0 1 ρ 3 d ρ + 2 ∫ 0 2 π d θ ∫ 0 1 ρ 3 d ρ = π 2 + 2 2 π = 1 + 2 2 π .    ( 2 )  因为 Σ 的方程为 z = 3 ( x 2 + y 2 ) , d S = 1 + z x 2 + z y 2 d x d y = 1 + 9 x 2 3 ( x 2 + y 2 ) + 9 y 2 3 ( x 2 + y 2 ) d x d y = 2 d x d y ,         又因 z 2 = 3 ( x 2 + y 2 ) , z = 3 ,消去 z 得 x 2 + y 2 = 3 ,因此 Σ 在 x O y 面上的投影区域 D x y 为 x 2 + y 2 ≤ 3 ,则          ∬ Σ ( x 2 + y 2 ) d S = ∬ D x y ( x 2 + y 2 ) ⋅ 2 d x d y ,转换为极坐标形式,上式 = 2 ∫ 0 2 π d θ ∫ 0 3 ρ 2 ⋅ ρ d ρ = 9 π . \begin{aligned} &\ \ (1)\ \Sigma由\Sigma_1和\Sigma_2组成,\Sigma_1为平面z=1上被圆周x^2+y^2=1所围的部分,\Sigma_2为锥面z=\sqrt{x^2+y^2}\ (0 \le z \le 1),\\\\ &\ \ \ \ \ \ \ \ 在\Sigma_1上,dS=dxdy,在\Sigma_2上,dS=\sqrt{1+z_x^2+z_y^2}dxdy=\sqrt{2}dxdy,\Sigma_1和\Sigma_2在xOy面上的投影区域\\\\ &\ \ \ \ \ \ \ \ D_{xy}为x^2+y^2 \le 1,因此\iint_{\Sigma}(x^2+y^2)dS=\iint_{\Sigma_1}(x^2+y^2)dS+\iint_{\Sigma_2}(x^2+y^2)dS=\\\\ &\ \ \ \ \ \ \ \ \iint_{D_{xy}}(x^2+y^2)dxdy+\iint_{D_{xy}}(x^2+y^2)\sqrt{2}dxdy,转换为极坐标形式,上式=\\\\ &\ \ \ \ \ \ \ \ \int_{0}^{2\pi}d\theta \int_{0}^{1}\rho^3 d\rho+\sqrt{2}\int_{0}^{2\pi}d\theta \int_{0}^{1}\rho^3d\rho=\frac{\pi}{2}+\frac{\sqrt{2}}{2}\pi=\frac{1+\sqrt{2}}{2}\pi.\\\\ &\ \ (2)\ 因为\Sigma的方程为z=\sqrt{3(x^2+y^2)},dS=\sqrt{1+z_x^2+z_y^2}dxdy=\sqrt{1+\frac{9x^2}{3(x^2+y^2)}+\frac{9y^2}{3(x^2+y^2)}}dxdy=2dxdy,\\\\ &\ \ \ \ \ \ \ \ 又因z^2=3(x^2+y^2),z=3,消去z得x^2+y^2=3,因此\Sigma在xOy面上的投影区域D_{xy}为x^2+y^2 \le 3,则\\\\ &\ \ \ \ \ \ \ \ \iint_{\Sigma}(x^2+y^2)dS=\iint_{D_{xy}}(x^2+y^2)\cdot 2dxdy,转换为极坐标形式,上式=2\int_{0}^{2\pi}d\theta \int_{0}^{\sqrt{3}}\rho^2\cdot \rho d\rho=9\pi. & \end{aligned}   (1) ΣΣ1Σ2组成,Σ1为平面z=1上被圆周x2+y2=1所围的部分,Σ2为锥面z=x2+y2  (0z1)        Σ1上,dS=dxdy,在Σ2上,dS=1+zx2+zy2 dxdy=2 dxdyΣ1Σ2xOy面上的投影区域        Dxyx2+y21,因此Σ(x2+y2)dS=Σ1(x2+y2)dS+Σ2(x2+y2)dS=        Dxy(x2+y2)dxdy+Dxy(x2+y2)2 dxdy,转换为极坐标形式,上式=        02πdθ01ρ3dρ+2 02πdθ01ρ3dρ=2π+22 π=21+2 π.  (2) 因为Σ的方程为z=3(x2+y2) dS=1+zx2+zy2 dxdy=1+3(x2+y2)9x2+3(x2+y2)9y2 dxdy=2dxdy        又因z2=3(x2+y2)z=3,消去zx2+y2=3,因此ΣxOy面上的投影区域Dxyx2+y23,则        Σ(x2+y2)dS=Dxy(x2+y2)2dxdy,转换为极坐标形式,上式=202πdθ03 ρ2ρdρ=9π.


6.  计算下列对面积的曲面积分: \begin{aligned}&6. \ 计算下列对面积的曲面积分:&\end{aligned} 6. 计算下列对面积的曲面积分:

   ( 1 )    ∬ Σ ( z + 2 x + 4 3 y ) d S ,其中 Σ 为平面 x 2 + y 3 + z 4 = 1 在第一卦限中的部分;    ( 2 )    ∬ Σ ( 2 x y − 2 x 2 − x + z ) d S ,其中 Σ 为平面 2 x + 2 y + z = 6 在第一卦限中的部分;    ( 3 )    ∬ Σ ( x + y + z ) d S ,其中 Σ 为球面 x 2 + y 2 + z 2 = a 2 上 z ≥ h   ( 0 < h < a ) 的部分;    ( 4 )    ∬ Σ ( x y + y z + z x ) d S ,其中 Σ 为锥面 z = x 2 + y 2 被柱面 x 2 + y 2 = 2 a x 所截得的有限部分 . \begin{aligned} &\ \ (1)\ \ \iint_{\Sigma}\left(z+2x+\frac{4}{3}y\right)dS,其中\Sigma为平面\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1在第一卦限中的部分;\\\\ &\ \ (2)\ \ \iint_{\Sigma}(2xy-2x^2-x+z)dS,其中\Sigma为平面2x+2y+z=6在第一卦限中的部分;\\\\ &\ \ (3)\ \ \iint_{\Sigma}(x+y+z)dS,其中\Sigma为球面x^2+y^2+z^2=a^2上z \ge h\ (0 \lt h \lt a)的部分;\\\\ &\ \ (4)\ \ \iint_{\Sigma}(xy+yz+zx)dS,其中\Sigma为锥面z=\sqrt{x^2+y^2}被柱面x^2+y^2=2ax所截得的有限部分. & \end{aligned}   (1)  Σ(z+2x+34y)dS,其中Σ为平面2x+3y+4z=1在第一卦限中的部分;  (2)  Σ(2xy2x2x+z)dS,其中Σ为平面2x+2y+z=6在第一卦限中的部分;  (3)  Σ(x+y+z)dS,其中Σ为球面x2+y2+z2=a2zh (0<h<a)的部分;  (4)  Σ(xy+yz+zx)dS,其中Σ为锥面z=x2+y2 被柱面x2+y2=2ax所截得的有限部分.

解:

   ( 1 )  在 Σ 上, z = 4 − 2 x − 4 3 y , Σ 在 x O y 面上的投影区域 D x y 为由 x 轴、 y 轴和直线 x 2 + y 3 = 1 所围成的三角形闭区域,         因此 ∬ Σ ( z + 2 x + 4 3 y ) d S = ∬ D x y [ ( 4 − 2 x − 4 3 y ) + 2 x + 4 3 y ] 1 + ( − 2 ) 2 + ( − 4 3 ) 2 d x d y =          ∬ D x y 4 ⋅ 61 3 d x d y = 4 61 3 ⋅ ( D x y 的面积 ) = 4 61 3 ⋅ ( 1 2 ⋅ 2 ⋅ 3 ) = 4 61 .    ( 2 )  在 Σ 上, z = 6 − 2 x − 2 y , Σ 在 x O y 面上的投影区域为由 x 轴、 y 轴和直线 x + y = 3 所围成的三角形闭区域,因此          ∬ Σ ( 2 x y − 2 x 2 − x + z ) d S = ∬ D x y [ 2 x y − 2 x 2 − x + ( 6 − 2 x − 2 y ) ] 1 + ( − 2 ) 2 + ( − 2 ) 2 d x d y =          3 ∫ 0 3 d x ∫ 0 3 − x ( 6 − 3 x − 2 x 2 + 2 x y − 2 y ) d y = 3 ∫ 0 3 [ ( 6 − 3 x − 2 x 2 ) ( 3 − x ) + x ( 3 − x ) 2 − ( 3 − x ) 2 ] d x =          3 ∫ 0 3 ( 3 x 3 − 10 x 2 + 9 ) d x = − 27 4 .    ( 3 )  在 Σ 上, z = a 2 − x 2 − y 2 , Σ 在 x O y 面上的投影区域 D x y = { ( x ,   y )   ∣   x 2 + y 2 ≤ a 2 − h 2 } ,因为积分曲面 Σ 关于          y O z 面和 z O x 面对称,则 ∬ Σ x d S = 0 , ∬ Σ y d S = 0 ,因此 ∬ Σ ( x + y + z ) d S = ∬ Σ z d S =          ∬ D x y a 2 − x 2 − y 2 1 + x 2 a 2 − x 2 − y 2 + y 2 a 2 − x 2 − y 2 d x d y = a ∬ D x y d x d y = a π ( a 2 − h 2 ) .    ( 4 )   Σ 在 x O y 面上的投影区域 D x y 为 x 2 + y 2 ≤ 2 a x ,因为 Σ 关于 z O x 面对称,函数 x y 和 y z 关于 y 为奇函数,所以          ∬ Σ x y d S = 0 , ∬ Σ y z d S = 0 ,因此 ∬ Σ ( x y + y z + z x ) d S = ∬ Σ z x d S = ∬ D x y x x 2 + y 2 1 + x 2 + y 2 x 2 + y 2 d x d y =          2 ∬ D x y x x 2 + y 2 d x d y ,转换为极坐标形式,上式 = 2 ∫ − π 2 π 2 d θ ∫ 0 2 a c o s   θ ρ c o s   θ ⋅ ρ ⋅ ρ d ρ =           8 2 a 4 ∫ 0 π 2 c o s 5   θ d θ = 8 2 a 4 ⋅ 4 5 ⋅ 2 3 = 64 15 2 a 4 . \begin{aligned} &\ \ (1)\ 在\Sigma上,z=4-2x-\frac{4}{3}y,\Sigma在xOy面上的投影区域D_{xy}为由x轴、y轴和直线\frac{x}{2}+\frac{y}{3}=1所围成的三角形闭区域,\\\\ &\ \ \ \ \ \ \ \ 因此\iint_{\Sigma}\left(z+2x+\frac{4}{3}y\right)dS=\iint_{D_{xy}}\left[\left(4-2x-\frac{4}{3}y\right)+2x+\frac{4}{3}y\right]\sqrt{1+(-2)^2+\left(-\frac{4}{3}\right)^2}dxdy=\\\\ &\ \ \ \ \ \ \ \ \iint_{D_{xy}}4\cdot \frac{\sqrt{61}}{3}dxdy=\frac{4\sqrt{61}}{3}\cdot(D_{xy}的面积)=\frac{4\sqrt{61}}{3}\cdot \left(\frac{1}{2}\cdot 2\cdot 3\right)=4\sqrt{61}.\\\\ &\ \ (2)\ 在\Sigma上,z=6-2x-2y,\Sigma在xOy面上的投影区域为由x轴、y轴和直线x+y=3所围成的三角形闭区域,因此\\\\ &\ \ \ \ \ \ \ \ \iint_{\Sigma}(2xy-2x^2-x+z)dS=\iint_{D_{xy}}[2xy-2x^2-x+(6-2x-2y)]\sqrt{1+(-2)^2+(-2)^2}dxdy=\\\\ &\ \ \ \ \ \ \ \ 3\int_{0}^{3}dx\int_{0}^{3-x}(6-3x-2x^2+2xy-2y)dy=3\int_{0}^{3}[(6-3x-2x^2)(3-x)+x(3-x)^2-(3-x)^2]dx=\\\\ &\ \ \ \ \ \ \ \ 3\int_{0}^{3}(3x^3-10x^2+9)dx=-\frac{27}{4}.\\\\ &\ \ (3)\ 在\Sigma上,z=\sqrt{a^2-x^2-y^2},\Sigma在xOy面上的投影区域D_{xy}=\{(x, \ y)\ |\ x^2+y^2 \le a^2-h^2\},因为积分曲面\Sigma关于\\\\ &\ \ \ \ \ \ \ \ yOz面和zOx面对称,则\iint_{\Sigma}xdS=0,\iint_{\Sigma}ydS=0,因此\iint_{\Sigma}(x+y+z)dS=\iint_{\Sigma}zdS=\\\\ &\ \ \ \ \ \ \ \ \iint_{D_{xy}}\sqrt{a^2-x^2-y^2}\sqrt{1+\frac{x^2}{a^2-x^2-y^2}+\frac{y^2}{a^2-x^2-y^2}}dxdy=a\iint_{D_{xy}}dxdy=a\pi(a^2-h^2).\\\\ &\ \ (4)\ \Sigma在xOy面上的投影区域D_{xy}为x^2+y^2 \le 2ax,因为\Sigma关于zOx面对称,函数xy和yz关于y为奇函数,所以\\\\ &\ \ \ \ \ \ \ \ \iint_{\Sigma}xydS=0,\iint_{\Sigma}yzdS=0,因此\iint_{\Sigma}(xy+yz+zx)dS=\iint_{\Sigma}zxdS=\iint_{D_{xy}}x\sqrt{x^2+y^2}\sqrt{1+\frac{x^2+y^2}{x^2+y^2}}dxdy=\\\\ &\ \ \ \ \ \ \ \ \sqrt{2}\iint_{D_{xy}}x\sqrt{x^2+y^2}dxdy,转换为极坐标形式,上式=\sqrt{2}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}d\theta \int_{0}^{2acos\ \theta}\rho cos\ \theta \cdot \rho \cdot \rho d\rho=\\\\ &\ \ \ \ \ \ \ \ \ 8\sqrt{2}a^4\int_{0}^{\frac{\pi}{2}}cos^5\ \theta d\theta=8\sqrt{2}a^4\cdot \frac{4}{5}\cdot \frac{2}{3}=\frac{64}{15}\sqrt{2}a^4. & \end{aligned}   (1) Σ上,z=42x34yΣxOy面上的投影区域Dxy为由x轴、y轴和直线2x+3y=1所围成的三角形闭区域,        因此Σ(z+2x+34y)dS=Dxy[(42x34y)+2x+34y]1+(2)2+(34)2 dxdy=        Dxy4361 dxdy=3461 (Dxy的面积)=3461 (2123)=461 .  (2) Σ上,z=62x2yΣxOy面上的投影区域为由x轴、y轴和直线x+y=3所围成的三角形闭区域,因此        Σ(2xy2x2x+z)dS=Dxy[2xy2x2x+(62x2y)]1+(2)2+(2)2 dxdy=        303dx03x(63x2x2+2xy2y)dy=303[(63x2x2)(3x)+x(3x)2(3x)2]dx=        303(3x310x2+9)dx=427.  (3) Σ上,z=a2x2y2 ΣxOy面上的投影区域Dxy={(x, y)  x2+y2a2h2},因为积分曲面Σ关于        yOz面和zOx面对称,则ΣxdS=0ΣydS=0,因此Σ(x+y+z)dS=ΣzdS=        Dxya2x2y2 1+a2x2y2x2+a2x2y2y2 dxdy=aDxydxdy=(a2h2).  (4) ΣxOy面上的投影区域Dxyx2+y22ax,因为Σ关于zOx面对称,函数xyyz关于y为奇函数,所以        ΣxydS=0ΣyzdS=0,因此Σ(xy+yz+zx)dS=ΣzxdS=Dxyxx2+y2 1+x2+y2x2+y2 dxdy=        2 Dxyxx2+y2 dxdy,转换为极坐标形式,上式=2 2π2πdθ02acos θρcos θρρdρ=         82 a402πcos5 θdθ=82 a45432=15642 a4.
在这里插入图片描述


7.  求抛物面壳 z = 1 2 ( x 2 + y 2 )   ( 0 ≤ z ≤ 1 ) 的质量,此壳的面密度为 μ = z . \begin{aligned}&7. \ 求抛物面壳z=\frac{1}{2}(x^2+y^2)\ (0 \le z \le 1)的质量,此壳的面密度为\mu=z.&\end{aligned} 7. 求抛物面壳z=21(x2+y2) (0z1)的质量,此壳的面密度为μ=z.
解:

   Σ : z = 1 2 ( x 2 + y 2 )   ( 0 ≤ z ≤ 1 ) 在 x O y 面上的投影区域 D x y = { ( x ,   y )   ∣   x 2 + y 2 ≤ 2 } , z x = x , z y = y ,   所以 d S = 1 + x 2 + y 2 d x d y ,因此 M = ∬ Σ z d S = ∬ D x y 1 2 ( x 2 + y 2 ) 1 + x 2 + y 2 d x d y ,转换为极坐标形式,   上式 = 1 2 ∬ D x y ρ 2 1 + ρ 2 ⋅ ρ d ρ d θ = 1 2 ∫ 0 2 π d θ ∫ 0 2 ρ 3 1 + ρ 2 d ρ ,令 t = ρ 2 , 1 2 ∫ 0 2 π d θ ∫ 0 2 ρ 3 1 + ρ 2 d ρ =    π 2 ∫ 0 2 t 1 + t d t = π 2 [ 2 3 t ( 1 + t ) 3 2 ∣ 0 2 − 2 3 ∫ 0 2 ( 1 + t ) 3 2 d t ] = π 2 [ 4 3 ⋅ 3 3 2 − 4 15 ( 3 5 2 − 1 ) ] = 2 15 π ( 6 3 + 1 ) . \begin{aligned} &\ \ \Sigma:z=\frac{1}{2}(x^2+y^2)\ (0 \le z \le 1)在xOy面上的投影区域D_{xy}=\{(x,\ y)\ |\ x^2+y^2 \le 2\},z_x=x,z_y=y,\\\\ &\ \ 所以dS=\sqrt{1+x^2+y^2}dxdy,因此M=\iint_{\Sigma}zdS=\iint_{D_{xy}}\frac{1}{2}(x^2+y^2)\sqrt{1+x^2+y^2}dxdy,转换为极坐标形式,\\\\ &\ \ 上式=\frac{1}{2}\iint_{D_{xy}}\rho^2\sqrt{1+\rho^2}\cdot \rho d\rho d\theta=\frac{1}{2}\int_{0}^{2\pi}d\theta \int_{0}^{\sqrt{2}}\rho^3\sqrt{1+\rho^2}d\rho,令t=\rho^2,\frac{1}{2}\int_{0}^{2\pi}d\theta \int_{0}^{\sqrt{2}}\rho^3\sqrt{1+\rho^2}d\rho=\\\\ &\ \ \frac{\pi}{2}\int_{0}^{2}t\sqrt{1+t}dt=\frac{\pi}{2}\left[\frac{2}{3}t(1+t)^{\frac{3}{2}}\bigg|_{0}^{2}-\frac{2}{3}\int_{0}^{2}(1+t)^{\frac{3}{2}}dt\right]=\frac{\pi}{2}\left[\frac{4}{3}\cdot 3^{\frac{3}{2}}-\frac{4}{15}(3^{\frac{5}{2}}-1)\right]=\frac{2}{15}\pi(6\sqrt{3}+1). & \end{aligned}   Σz=21(x2+y2) (0z1)xOy面上的投影区域Dxy={(x, y)  x2+y22}zx=xzy=y  所以dS=1+x2+y2 dxdy,因此M=ΣzdS=Dxy21(x2+y2)1+x2+y2 dxdy,转换为极坐标形式,  上式=21Dxyρ21+ρ2 ρdρdθ=2102πdθ02 ρ31+ρ2 dρ,令t=ρ22102πdθ02 ρ31+ρ2 dρ=  2π02t1+t dt=2π[32t(1+t)23 023202(1+t)23dt]=2π[34323154(3251)]=152π(63 +1).


8.  求面密度为 μ 0 的均匀半球壳 x 2 + y 2 + z 2 = a 2   ( z ≥ 0 ) 对于 z 轴的转动惯量 . \begin{aligned}&8. \ 求面密度为\mu_0的均匀半球壳x^2+y^2+z^2=a^2\ (z \ge 0)对于z轴的转动惯量.&\end{aligned} 8. 求面密度为μ0的均匀半球壳x2+y2+z2=a2 (z0)对于z轴的转动惯量.
解:

   I z = ∬ Σ ( x 2 + y 2 ) μ 0 d S = μ 0 ∬ x 2 + y 2 ≤ a 2 ( x 2 + y 2 ) 1 + x 2 + y 2 a 2 − x 2 − y 2 d x d y =    μ 0 ∬ x 2 + y 2 ≤ a 2 ( x 2 + y 2 ) ⋅ a a 2 − x 2 − y 2 d x d y ,转换为极坐标形式,上式 = μ 0 ∫ 0 2 π d θ ∫ 0 a a ρ 2 a 2 − ρ 2 ⋅ ρ d ρ ,   令 ρ = a s i n   t ,上式 = 2 π a μ 0 ∫ 0 π 2 a 3 s i n 3   t a c o s   t ⋅ a c o s   t d t = 2 π a 4 μ 0 ∫ 0 π 2 s i n 3   t d t = 2 π a 4 μ 0 ⋅ 2 3 = 4 3 π a 4 μ 0 . \begin{aligned} &\ \ I_z=\iint_{\Sigma}(x^2+y^2)\mu_0dS=\mu_0\iint_{x^2+y^2 \le a^2}(x^2+y^2)\sqrt{1+\frac{x^2+y^2}{a^2-x^2-y^2}}dxdy=\\\\ &\ \ \mu_0\iint_{x^2+y^2 \le a^2}(x^2+y^2)\cdot \frac{a}{\sqrt{a^2-x^2-y^2}}dxdy,转换为极坐标形式,上式=\mu_0\int_{0}^{2\pi}d\theta \int_{0}^{a}\frac{a\rho^2}{\sqrt{a^2-\rho^2}}\cdot \rho d\rho,\\\\ &\ \ 令\rho=asin\ t,上式=2\pi a\mu_0\int_{0}^{\frac{\pi}{2}}\frac{a^3sin^3\ t}{acos\ t}\cdot acos\ tdt=2\pi a^4\mu_0\int_{0}^{\frac{\pi}{2}}sin^3\ tdt=2\pi a^4\mu_0\cdot \frac{2}{3}=\frac{4}{3}\pi a^4\mu_0. & \end{aligned}   Iz=Σ(x2+y2)μ0dS=μ0x2+y2a2(x2+y2)1+a2x2y2x2+y2 dxdy=  μ0x2+y2a2(x2+y2)a2x2y2 adxdy,转换为极坐标形式,上式=μ002πdθ0aa2ρ2 aρ2ρdρ  ρ=asin t,上式=2πaμ002πacos ta3sin3 tacos tdt=2πa4μ002πsin3 tdt=2πa4μ032=34πa4μ0.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Navigator_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值