GEE土地分类:Google Earth Engine 进行非监督土地覆盖分类(k-means,、CascadeKMeans、wekaLVQ和wekaXMeans聚类分析)和 时序的NDVI 分析

方法

K-Means、CascadeKMeans、WekaLVQ 和 WekaXMeans 的详细解释与分析

在实际应用中,选择哪种算法取决于数据集的特征和分析目标。如果数据集规模较大且需要快速处理,CascadeKMeans 是一个不错的选择;如果需要自动确定簇的数量,WekaXMeans 更为合适。对于非线性可分的数据,WekaLVQ 可能是更好的选择。

1. K-Means 聚类算法

K-Means 是一种经典的无监督学习聚类算法,广泛应用于数据科学中。它的目标是将数据点划分为 (k) 个簇,使得每个数据点属于与其质心(centroid)最近的簇。算法的基本步骤如下:

  1. 初始化:随机选择 (k) 个初始质心,或者使用特定的方法(如 K-Means++)进行初始化。
  2. 分配步骤:将每个数据点分配到与其最近的质心所在的簇。
  3. 更新步骤:重新计算每个簇的质心,质心是簇内所有点的均值。
  4. 迭代:重复分配和更新步骤&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值