方法
K-Means、CascadeKMeans、WekaLVQ 和 WekaXMeans 的详细解释与分析
在实际应用中,选择哪种算法取决于数据集的特征和分析目标。如果数据集规模较大且需要快速处理,CascadeKMeans 是一个不错的选择;如果需要自动确定簇的数量,WekaXMeans 更为合适。对于非线性可分的数据,WekaLVQ 可能是更好的选择。
1. K-Means 聚类算法
K-Means 是一种经典的无监督学习聚类算法,广泛应用于数据科学中。它的目标是将数据点划分为 (k) 个簇,使得每个数据点属于与其质心(centroid)最近的簇。算法的基本步骤如下:
- 初始化:随机选择 (k) 个初始质心,或者使用特定的方法(如 K-Means++)进行初始化。
- 分配步骤:将每个数据点分配到与其最近的质心所在的簇。
- 更新步骤:重新计算每个簇的质心,质心是簇内所有点的均值。
- 迭代:重复分配和更新步骤&#x