133. Clone Graph
Given a reference of a node in a connected undirected graph.
Return a deep copy (clone) of the graph.
Each node in the graph contains a value (int) and a list (List[Node]) of its neighbors.
class Node {
public int val;
public List<Node> neighbors;
}
Test case format:
For simplicity, each node’s value is the same as the node’s index (1-indexed). For example, the first node with val == 1, the second node with val == 2, and so on. The graph is represented in the test case using an adjacency list.
An adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.
The given node will always be the first node with val = 1. You must return the copy of the given node as a reference to the cloned graph.
Example 1:
Input: adjList = [[2,4],[1,3],[2,4],[1,3]]
Output: [[2,4],[1,3],[2,4],[1,3]]
Explanation: There are 4 nodes in the graph.
1st node (val = 1)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
2nd node (val = 2)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
3rd node (val = 3)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
4th node (val = 4)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
Example 2:
Input: adjList = [[]]
Output: [[]]
Explanation: Note that the input contains one empty list. The graph consists of only one node with val = 1 and it does not have any neighbors.
Example 3:
Input: adjList = []
Output: []
Explanation: This an empty graph, it does not have any nodes.
Constraints:
- The number of nodes in the graph is in the range [0, 100].
- 1 <= Node.val <= 100
- Node.val is unique for each node.
- There are no repeated edges and no self-loops in the graph.
- The Graph is connected and all nodes can be visited starting from the given node.
From: LeetCode
Link: 133. Clone Graph
Solution:
Ideas:
-
Initialization: The process begins by initializing a mapping array to keep track of the correspondence between the nodes in the original graph and their clones in the new graph.
-
DFS Traversal: It employs Depth-First Search (DFS) traversal to visit each node in the graph and make a clone of it. DFS is used recursively to navigate through the graph’s nodes and their neighbors.
-
Node Cloning: When a node is visited, it is cloned, and its corresponding mapping is stored in the mapping array. If a node is already in the mapping array, it has been cloned, and the cloned node is returned directly.
-
Neighbor Cloning: The neighbors of each node are also cloned recursively during the DFS traversal. The cloned neighbors are then linked to the cloned nodes appropriately, maintaining the graph’s structure.
-
Return Cloned Graph: Finally, a reference to the cloned graph is returned.
Code:
/**
* Definition for a Node.
* struct Node {
* int val;
* int numNeighbors;
* struct Node** neighbors;
* };
*/
struct Node* dfs(struct Node* node, struct Node** map); // Forward declaration
struct Node* cloneGraph(struct Node* node) {
if(!node) return NULL; // If the graph is empty
// Hash map to store mapping between original node and cloned node
struct Node* map[101] = {NULL};
return dfs(node, map);
}
struct Node* dfs(struct Node* node, struct Node** map) {
if(map[node->val]) return map[node->val]; // If the node is already cloned, return the clone
// Clone the current node
struct Node* cloneNode = (struct Node*)malloc(sizeof(struct Node));
cloneNode->val = node->val;
cloneNode->numNeighbors = node->numNeighbors;
cloneNode->neighbors = (struct Node**)malloc(cloneNode->numNeighbors * sizeof(struct Node*));
map[node->val] = cloneNode; // Store the mapping between original node and cloned node
// Recursively clone the neighbors
for(int i = 0; i < node->numNeighbors; i++)
cloneNode->neighbors[i] = dfs(node->neighbors[i], map);
return cloneNode;
}