LeetCode //C - 746. Min Cost Climbing Stairs

这篇文章介绍了如何使用动态规划解决LeetCode中的最小成本爬楼梯问题。给定一个表示楼梯成本的整数数组,目标是找到从起始步到达楼顶的最小成本路径。通过维护到达每一步的最小成本,最后返回到达顶层的最小成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

746. Min Cost Climbing Stairs

You are given an integer array cost where cost[i] is the cost of i t h i^{th} ith step on a staircase. Once you pay the cost, you can either climb one or two steps.

You can either start from the step with index 0, or the step with index 1.

Return the minimum cost to reach the top of the floor.
 

Example 1:

Input: cost = [10,15,20]
Output: 15
Explanation: You will start at index 1.
- Pay 15 and climb two steps to reach the top.
The total cost is 15.

Example 2:

Input: cost = [1,100,1,1,1,100,1,1,100,1]
Output: 6
Explanation: You will start at index 0.
- Pay 1 and climb two steps to reach index 2.
- Pay 1 and climb two steps to reach index 4.
- Pay 1 and climb two steps to reach index 6.
- Pay 1 and climb one step to reach index 7.
- Pay 1 and climb two steps to reach index 9.
- Pay 1 and climb one step to reach the top.
The total cost is 6.

Constraints:
  • 2 <= cost.length <= 1000
  • 0 <= cost[i] <= 999

From: LeetCode
Link: 746. Min Cost Climbing Stairs


Solution:

Ideas:

This function calculates the minimum cost to reach the top of the staircase by dynamically finding the minimum cost to reach each step. At the end, since you can reach the top from either the last step or the one before it, it returns the minimum of these two values.

Caode:
int min(int a, int b) {
    return a < b ? a : b;
}

int minCostClimbingStairs(int* cost, int costSize) {
    if (costSize == 2) {
        return min(cost[0], cost[1]);
    }
    
    int dp[costSize];
    dp[0] = cost[0];
    dp[1] = cost[1];
    
    for (int i = 2; i < costSize; i++) {
        dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];
    }
    
    // Since you can either end on the last step or jump over it from the second to last step,
    // take the minimum of the last two dp values.
    return min(dp[costSize - 1], dp[costSize - 2]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Navigator_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值