随着商业智能和大数据价值的不断深入人心,很多企业都搭建了商业智能平台,帮助企业利用数据分析企业运行现状,辅助决策。
传统的企业BI平台都是由IT相应——业务提需求的模式运行,企业数据分析的重担基本都压在IT部门,随着企业发展,业务分析需求不断增加,导致IT部门需求应接不暇,而且由于对业务的不了解,在项目进展的过程中,IT往往要和业务反复沟通需求,然后再开发、测试。
这样导致IT工作量倍增,疲于响应,业务的需求也无法及时满足,甚至僵化了IT和业务部门之间的关系。
后来新型的自助式BI的概念应运而生,完美地解决了上述问题。自助式BI通过搭建一个数据整合平台,由IT集中数据管控来进行数据分发,将数据分析的任务从IT转移到业务人员身上。
一来业务人员能够灵活使用数据进行分析,探索数据价值,而来IT部门也不用再为无穷无尽的需求犯愁,有了更多时间去聚焦在企业数据底层的梳理,提升企业数据质量,推动企业数字化创新。

很多企业在没接触商业智能系统前对它的认识存在误区,认为商业智能系统就是买个技术买个软件而已,其实不然,BI不仅仅是一个软件/平台,而是一个完整的商业智能解决方案,从前期部署到后续维护,需要考虑各方面因素,比如数据系统后端架构,企业业务需求的适应,实施技术如何融入到内部工作流程等等。
那么,企业应该如何建设新型自助式BI平台呢,这里我拿国内用的比较多的BI工具FineBI为例来讲解一下企业构建自助式BI的步骤。
一、底层搭建
企业数据从产生到应用依次经过数据产生、数据存储与处理、数据应用三个阶段,由业务系统产生的数据经过ETL加载到数据仓库,并在数据仓库中进一步加工处理后进入BI工具,通过BI工具实现数据分析与可视化展示,FineBI处于企业数据管理的最上层,即数据应用层。

本文介绍了如何构建自助式BI平台,以解决传统IT响应业务分析需求的问题。通过五步(底层搭建、应用部署、需求调研、数据准备、权限设置),详细阐述了以FineBI为例的BI系统建设过程,强调了底层数据建设、需求规范化和权限管理的重要性,旨在帮助业务人员自主进行数据分析,提升企业数据应用效率。
最低0.47元/天 解锁文章
6448

被折叠的 条评论
为什么被折叠?



