题目:
一个人从(0,0)走到(10^9,10^9),每次只能往右、上、右上走一个单位。
在地图上,有n个村庄,每个村庄有一个收获值,只有当从左下方走到某个点的时候,这个点的收获值才能被获取。给出n个村庄的坐标和每个村庄的收获值,问最大的收获值和是多少。
(1≤N≤105)
分析:
用线段树根据y轴维护收获值和。
对y离散化,然后对所有村庄按照x从小到大,y从大到小的顺序排序。对于第i个点,用线段树查询 1 到 a[i].y-1 内收获值和的最大值,用这个最大值+a[i].v放进 a[i].y 这个点。
x从小到大,y从大到小保证遍历到第 i 个点时,纵坐标[1, a[i].y-1]的值全是可用的。
代码:
#include <bits/stdc++.h>
using namespace std;
#define ms(a,b) memset(a,b,sizeof(a))
#define lson rt*2,l,(l+r)/2
#define rson rt*2+1,(l+r)/2+1,r
typedef unsigned long long ull;
typedef long long ll;
const int MAXN = 1e5+5;
const double EPS=1e-8;
const int INF=0x3f3f3f3f;
const int MOD = 1e9+7;
struct Node{
int x,y,v;
Node(){}
Node(int x,int y,int v):x(x),y(y),v(v){}
}a[MAXN];
int n, tree[MAXN << 2];
bool cmp(const Node a,const Node b){
if(a.x != b.x) return a.x < b.x;
return a.y > b.y;
}
void pushup(int rt){
tree[rt] = max(tree[rt << 1], tree[rt << 1 | 1]);
}
void update(int a,int b,int rt,int l,int r){
if(l==r){
tree[rt]=max(tree[rt],b);
return;
}
if(a<=(l+r)/2) update(a,b,lson);
else update(a,b,rson);
pushup(rt);
}
int query(int L,int R,int rt,int l,int r){
if(L<=l && R>=r){
return tree[rt];
}
if(R<=(l+r)/2) return query(L,R,lson);
else if(L>(l+r)/2) return query(L,R,rson);
else return max(query(L,R,lson),query(L,R,rson));
}
int main(){
ios::sync_with_stdio(false);
// freopen("1.txt","r",stdin);
int T,c[MAXN];
cin >> T;
while(T--){
cin >> n;
for(int i=1;i<=n;i++){
cin >> a[i].x >> a[i].y >> a[i].v;
c[i] = a[i].y;
}
sort(c+1,c+1+n);
int m = unique(c+1,c+n+1)-(c+1);
for(int i=1;i<=n;i++){
a[i].y = lower_bound(c+1,c+1+m,a[i].y) - c;
}
ms(tree,0);
sort(a+1,a+n+1,cmp);
int ans = 0, Max = 0;
for(int i=1;i<=n;i++){
if(a[i].y == 1) {
Max = 0;
update(1,a[i].v,1,1,m);
}
else{
Max = query(1,a[i].y-1,1,1,m);
update(a[i].y,Max+a[i].v,1,1,m);
}
ans = max(ans,Max+a[i].v);
}
cout << ans << endl;
}
return 0;
}