---------数学---------
nbl97
这个作者很懒,什么都没留下…
展开
-
线性代数的本质 - 02 - 线性组合、张成的空间与基
一种有趣的方式看待坐标当看到一对描述向量的数时,如 (3,−2)(3,−2)(3,-2)。把它的每个坐标看作是一个标量,也就是说它们如何压缩或拉伸一个向量。在xy坐标系中有两个特殊向量,i-hat 和 j-hat, 也就是xy两个方向的单位向量。从这一角度看,(3,−2)(3,−2)(3,-2) 就是两个经过缩放的向量的和。i-hat和j-hat在坐标系中异常重要,被称为坐标系的“基向...原创 2018-05-02 15:24:05 · 1569 阅读 · 0 评论 -
线性代数的本质 - 10 - 特征向量与特征值
特征值和特征向量 AAA 是 nnn 阶矩阵,如果数 λλ\lambda 和 nnn 维非零列向量 x⃗ x→\vec x 使关系式Ax⃗ =λx⃗ Ax→=λx→A\vec x = \lambda \vec x成立,那么,这样的数 λλ\lambda 称为矩阵 AAA 的特征值,非零向量 x⃗ x→\vec x 称为 AAA 的对应于特征值 λλ\...原创 2018-06-10 17:48:07 · 1350 阅读 · 0 评论 -
线性代数的本质 - 09 - 基变换
基变换同一个向量,同不同的基表示,会得到不同的结果。假如现在有一组新的基底 b1=[21]b1=[21]b_1 = \left[ \begin{matrix} 2 \\ 1 \end{matrix}\right] 和 b2=[−11]b2=[−11]b_2 = \left[ \begin{matrix} -1 \\ 1 \end{matrix}\right] ,令 A=[b1b2]...原创 2018-06-10 00:52:41 · 1232 阅读 · 0 评论 -
线性代数的本质 - 06 - 逆矩阵、列空间与零空间
线性方程组、逆矩阵矩阵是解线性方程组很好的工具。线性方程组长这个样子: 未知量放在左边常数项放右边未知量竖直对齐必要时补0我们就可以将一个线性方程组写成这样 同样,我们可以从几何的角度解释这个方程,Ax⃗ =v⃗ Ax→=v→A\vec x = \vec v意味着寻找一个向量x⃗ x→\vec x使得x⃗ x→\vec x在经...原创 2018-05-31 00:52:17 · 1185 阅读 · 0 评论 -
线性代数的本质 - 05 - 行列式
行列式行列式的值就是按照这个矩阵变换后的 i-hat 和 j-hat 组成的区域的面积的缩放倍数。因为变换时保持“所有线平行且原点不变”的,所以这个倍数是任何区域面积变化的倍数。行列式被用来描述一个变换对空间的缩放程度。 一个二维线性变化的行列式值为0,表示它将空间压缩到了一条直线或一个点上。所以,用行列式就可以知道变换是否给空间降了维。其实行列式是允许负值的,负值与空间的方...原创 2018-05-30 16:24:05 · 870 阅读 · 3 评论 -
线性代数的本质 - 04 - 矩阵乘法与线性变换复合
线性变换的组合比如先旋转再剪切,从头到尾的总体作用是另一个线性变换,这个新的变换通常被称为前两个独立变换的“复合变换”。我们可以通过得到变换后的 i-hat 和 j-hat来得到这个复合变换。但这没有体现出两个变换复合的动态变化,只体现了最后的结果,如何通过两个变换得到这个新变换呢?有一种方法是这样的: 从数值上看,这是对一个向量先旋转后剪切,无论所选的向量是什么,结果都...原创 2018-05-30 14:45:59 · 1740 阅读 · 2 评论 -
线性代数的本质 - 08 - 以线性变换的眼光看叉积
线性变换的眼光看叉积我们在计算向量v⃗ ,w⃗ v→,w→\vec v,\vec w的叉积p⃗ p→\vec p时,通常如此: 并且被告知p⃗ p→\vec p具有如下三个几何性质:长度等于v⃗ ,w⃗ v→,w→\vec v,\vec w张成的平行四边形的面积方向与v⃗ ,w⃗ v→,w→\vec ...原创 2018-06-05 15:26:45 · 2666 阅读 · 2 评论 -
线性代数的本质 - 07 - 点积与对偶性
二维到一维线性变换两个向量,v⃗ ,w⃗ ,v→,w→,\vec v, \vec w的点积的值等于v⃗ v→\vec v在 w⃗ w→\vec w上的投影长度 ××\times w⃗ w→\vec w自己的长度 。方向相同时是正数,相反时是负数。至于谁投影到谁之所以无区别,因为可用对称性和倍增解决。为什么点积和投影有关系?讨论这个...原创 2018-06-04 14:36:31 · 2525 阅读 · 0 评论 -
线性代数的本质 - 03 - 矩阵与线性变换
何为线性变换?“变换”本质上是“函数”的一种花哨的说法,它接收输入内容,并输出对应结果。只不过在线性代数下,我们考虑的是接收一个向量并且输出一个向量的变换。 既然如此,为何还用多余的属数术语“变换”,而不用“函数”呢?使用“变换”是在暗示以特定方式来可视化这一输入-输出关系。一种理解“向量的函数”的方式是使用运动,即将输入向量移动到输出向量的位置上。整个平面内所有的向量都按照规则变换,也就完成了整原创 2018-05-03 00:52:25 · 402 阅读 · 0 评论 -
线性代数的本质 - 11 - 抽象线性空间
抽象向量空间思考一个问题,什么是向量?你可能会说:一组数字,一个有向箭头,空间中一个点等等。为了打破这种思维定势,更加全面客观地认识向量,我们考虑这样一种特殊的向量,它既不是一组数字也不是一个有向箭头,但同样具有向量特性,它就是函数。假设有函数 f(x)f(x)f(x) 和 g(x)g(x)g(x) ,(f+g)(x)(f+g)(x)(f+g)(x) 自然就等于 f(x)+g(x...原创 2018-06-11 01:15:33 · 1209 阅读 · 0 评论