自然语言处理7——LDA

1. PLSA、共轭先验分布;LDA主题模型原理

1.1 PLSA

概率隐语义分析(PLSA)是一个著名的针对文本建模的模型,是一个生成模型。因为加入了主题模型,所以可以很大程度上改善多词一义和一词多义的问题。Hoffmm在1999年提出了概率隐语义分析(Probabilistic Latent Semantic Analysis)。他认为每个主题下都有一个词汇的概率分布,而一篇文章通常由多个主题构成,并且文章中的每个单词都是由某个主题生成的。

关于PLSA的原理及公式推导可以参考博客 http://www.cnblogs.com/bentuwuying/p/6219970.html

(1) PLSA的优势

  • 定义了概率模型,而且每个变量以及相应的概率分布和条件概率分布都有明确的物理解释。
  • 相比于LSA隐含了高斯分布假设,pLSA隐含的Multi-nomial分布假设更符合文本特性。
  • pLSA的优化目标是是KL-divergence最小,而不是依赖于最小均方误差等准则。
  • 可以利用各种model selection和complexity control准则来确定topic的维数。

(2) pLSA的不足

  • 概率模型不够完备:在document层面上没有提供合适的概率模型,使得pLSA并不是完备的生成式模型,而必须在确定document i的情况下才能对模型进行随机抽样。
  • 随着document和term 个数的增加,pLSA模型也线性增加,变得越来越庞大。
  • EM算法需要反复的迭代,需要很大计算量。

1.2 共轭先验分布

设θ是总体分布中的参数(或参数向量),π(θ)是θ的先验密度函数,假如由抽样信息算得的后验密度函数与π(θ)有相同的函数形式,则称π(θ)是θ的(自然)共轭先验分布。

1.2.1 共轭先验分布的参数确定

如对于总体为二项分布,其成功概率的共轭先验分布为Beta(α,β)Beta(α,β),在确定了共轭先验分布之后,我们还需要确定先验分布中的参数,像这里的(α,β)(α,β)。因此下面介绍两种常见方法来确定其参数。

(1) 先验矩

假如利用先验信息能得到成功概率θθ的若干个估计值, θ 1 、 θ 2 、 . . . 、 θ k θ1、θ2、...、θk θ1θ2...θk。由此可算得先验均值 θ ‾ \overline{θ} θ和先验方差 S θ 2 S^2_θ Sθ2
同时由先验分布贝塔分布Beta(α,β),可以得出(α,β)(α,β)表示的期望和方差。
由此可解得(α,β)(α,β)的值。

(2) 先验分位数

若由先验信息可以确定贝塔分布的两个分位数,则可由分位数的定义列出两个方程组同样接触所需参数。

1.2.2 常见的共轭先验分布

总体分布参数共轭先验分布
二项分布成功概率贝塔分布 B ( α , β ) \Beta(α,β) B(α,β)
泊松分布均值伽马分布 Γ ( k , θ ) \Gamma(k,\theta) Γ(k,θ)
指数分布均值的倒数伽马分布 Γ ( k , θ ) \Gamma(k,\theta) Γ(k,θ)
正态分布(方差已知)均值正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)
正态分布(方差未知)方差逆伽马分布 I G a ( α , β ) IGa(α,β) IGa(α,β)

1.3 LDA主题模型原理

事实上,理解了pLSA模型,也就差不多快理解了LDA模型,因为LDA就是在pLSA的基础上加层贝叶斯框架,即LDA就是pLSA的贝叶斯版本(正因为LDA被贝叶斯化了,所以才需要考虑历史先验知识,才加的两个先验参数)。

对于语料库中的每篇文档,LDA定义了如下生成过程(generative process):

(1).对每一篇文档,从主题分布中抽取一个主题

(2) 从上述被抽到的主题所对应的单词分布中抽取一个单词

(3) 重复上述过程直至遍历文档中的每一个单词。

之前没接触过,自己也没完全搞懂,就先不写这部分了,强烈推荐"LDA数学八卦"系列,内容详细通俗易懂。

2. LDA应用场景

(1) 相似文档发现

(2) 新闻个性化推荐

(3) 自动打标签

(4) wordRank

具体介绍,传送门【算法】LDA算法及应用

3. LDA优缺点

LDA算法既可以用来降维,又可以用来分类,但是目前来说,主要还是用于降维。

LDA算法的主要优点有:

1)在降维过程中可以使用类别的先验知识经验,而像PCA这样的无监督学习则无法使用类别先验知识。

2)LDA在样本分类信息依赖均值而不是方差的时候,比PCA之类的算法较优。

LDA算法的主要缺点有:

1)LDA不适合对非高斯分布样本进行降维,PCA也有这个问题。

2)LDA降维最多降到类别数k-1的维数,如果我们降维的维度大于k-1,则不能使用LDA。当然目前有一些LDA的进化版算法可以绕过这个问题。

3)LDA在样本分类信息依赖方差而不是均值的时候,降维效果不好。

4)LDA可能过度拟合数据。

4. LDA 在sklearn中的参数学习

LDA在sklearn中,sklearn.decomposition.LatentDirichletAllocation()
主要参数:

n_components : int, optional (default=10)
    主题数

doc_topic_prior : float, optional (default=None)
    文档主题先验Dirichlet分布θd的参数α

topic_word_prior : float, optional (default=None)
    主题词先验Dirichlet分布βk的参数η

learning_method : 'batch' | 'online', default='online'
    LDA的求解算法。有 ‘batch’ 和 ‘online’两种选择

learning_decay : float, optional (default=0.7)
   控制"online"算法的学习率,默认是0.7

learning_offset : float, optional (default=10.)
    仅在算法使用"online"时有意义,取值要大于1。用来减小前面训练样本批次对最终模型的影响
    
max_iter : integer, optional (default=10)
    EM算法的最大迭代次数

batch_size : int, optional (default=128)
   仅在算法使用"online"时有意义, 即每次EM算法迭代时使用的文档样本的数量。

evaluate_every : int, optional (default=0)
    多久评估一次perplexity。仅用于`fit`方法。将其设置为0或负数以不评估perplexity
     训练。
     
total_samples : int, optional (default=1e6)
    仅在算法使用"online"时有意义, 即分步训练时每一批文档样本的数量。在使用partial_fit函数时需要。

perp_tol : float, optional (default=1e-1)
    batch的perplexity容忍度。

mean_change_tol : float, optional (default=1e-3)
    即E步更新变分参数的阈值,所有变分参数更新小于阈值则E步结束,转入M步。

max_doc_update_iter : int (default=100)
    即E步更新变分参数的最大迭代次数,如果E步迭代次数达到阈值,则转入M步。

n_jobs : int, optional (default=1)
   在E步中使用的资源数量。 如果为-1,则使用所有CPU。
     ``n_jobs``低于-1,(n_cpus + 1 + n_jobs)被使用。

verbose : int, optional (default=0)
    详细程度。

5. 使用LDA生成主题特征,在之前特征的基础上加入主题特征进行文本分类

5.1 LDA生成主题特征

这里还是对之前几篇博客中的THUCNEWS数据集进行处理,部分代码如下(省略数据处理部分,数据处理见前几篇博客):

from sklearn.decomposition import LatentDirichletAllocation
print('--------------------训练完成-----------------------')
# 利用已训练好的模型将doc转换为话题分布
doc_topic_dist = model.transform(x_train)
# 通过调用lda.perplexity(X)函数,可以得知当前训练的perplexity
print(doc_topic_dist, '当前训练的perplexity', model.perplexity(x_train), sep='\n')

def print_top_words(model, feature_names, n_top_words):
    #打印每个主题下权重较高的term
    for topic_idx, topic in enumerate(model.components_):
        print("Topic #%d:" % topic_idx)
        print(" ".join([feature_names[i]
                        for i in topic.argsort()[:-n_top_words - 1:-1]]))
    print('打印主题-词语分布矩阵')
    return model.components_

tf_feature_names = vectorizer.get_feature_names()
m = print_top_words(model, tf_feature_names, 20)
print(m)

得到结果如下图所示:
在这里插入图片描述
在这里插入图片描述
可以看到,数据集中的文档内容已经按照主题进行了分类,并且效果较为明显。但是,因为这里没有进行调参等优化处理,只是简答地对LDA主题的一个实例,所以perplexity明显较高,可以通过调参得到更可靠的模型。

5.2 LDA + SVM 文本分类

试着做了一下,…错的有点离谱了,正在改进,先贴一下代码,请各位大佬指正。

tf_vectorizer = CountVectorizer()
tf_train = tf_vectorizer.fit_transform(train_content)
tf_test = tf_vectorizer.fit_transform(test_content)```
lda = LatentDirichletAllocation(n_components=10,
                                    max_iter=20,
                                    learning_method='batch',
                                    evaluate_every=200,
                                    verbose=0)
x_train = lda.fit(tf_train).transform(tf_train)
x_test = lda.fit(tf_test).transform(tf_test)
clf = nb.SVC()
clf.fit(x_train, y_train)
print('--------------------训练完成-----------------------')
pred = clf.predict(x_test)
print("classification report on test set for classifier:")
print(classification_report(y_test, pred ))

参考

[1]http://www.cnblogs.com/bentuwuying/p/6219970.html
[2]共轭先验分布 - CSDN博客 -(https://blog.csdn.net/u010945683/article/details/49149815
[3]利用sklearn训练LDA主题模型及调参详解 - CSDN博客 -(https://blog.csdn.net/TiffanyRabbit/article/details/76445909

  • 4
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Growing_Snake

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值