pdf版本笔记的下载地址: 控制装置与仪表随堂练习答案及知识点总结02(访问密码:3834)
控制装置与仪表随堂练习答案及知识点总结02
第二章 计算机控制的理论基础
§2.2.连续模型与离散模型间的转换
常用方法有: 向后差分变换法,双线性变换法,零阶保持器法,零极点匹配法.
向后差分变换法
向后差分变换法中
s
s
s与
z
z
z之间的关系为:
s
≈
(
1
−
z
−
1
)
/
T
s \approx (1-z^{-1})/T
s≈(1−z−1)/T
其中
T
T
T为采样周期,因此向后差分变化法可表达为:
G
(
z
)
≈
G
(
s
)
∣
s
=
(
1
−
z
−
1
)
/
T
G(z) \approx \left. G(s) \right| _{s=(1-z^{-1})/T}
G(z)≈G(s)∣s=(1−z−1)/T
双线性变换法
双线性变换法中
s
s
s与
z
z
z之间的关系为:
z
≈
1
+
s
T
/
2
1
−
s
T
/
2
s
≈
2
T
⋅
1
−
z
−
1
1
+
z
−
1
z \approx \frac{1+sT/2}{1-sT/2} \\ s \approx \frac{2}{T} \cdot \frac{1-z^{-1}}{1+z^{-1}}
z≈1−sT/21+sT/2s≈T2⋅1+z−11−z−1
其中
T
T
T为采样周期,因此双线性变换法可表达为:
G
(
z
)
≈
G
(
s
)
∣
s
=
2
T
⋅
1
−
z
−
1
1
+
z
−
1
G
(
s
)
≈
G
(
z
)
∣
z
=
1
+
s
T
/
2
1
−
s
T
/
2
G(z) \approx \left. G(s) \right| _{ s = \frac{2}{T} \cdot \frac{1-z^{-1}}{1+z^{-1}} } \\ G(s) \approx \left. G(z) \right| _{ z = \frac{1+sT/2}{1-sT/2} }
G(z)≈G(s)∣s=T2⋅1+z−11−z−1G(s)≈G(z)∣z=1−sT/21+sT/2
零阶保持器法(☆)
G ( z ) = Z [ 1 − e − s T s ⋅ G ( s ) ] = ( 1 − z − 1 ) Z [ G ( s ) s ] \begin{aligned} G(z) &= \mathbb{Z} \left[ \frac{1-e^{-sT}}{s} \cdot G(s) \right] \\ &= (1-z^{-1}) \mathbb{Z} \left[ \frac{G(s)}{s} \right] \end{aligned} G(z)=Z[s1−e−sT⋅G(s)]=(1−z−1)Z[sG(s)]
例题: 已知 G ( s ) = 1 s ( s + 1 ) G(s)=\frac{1}{s(s+1)} G(s)=s(s+1)1,使用零阶保持器法求 G ( z ) G(z) G(z)?
解:
G
(
z
)
=
(
1
−
z
−
1
)
Z
[
G
(
s
)
s
]
=
(
1
−
z
−
1
)
Z
[
1
s
2
(
s
+
1
)
]
=
(
1
−
z
−
1
)
Z
[
1
s
2
−
1
s
−
1
s
+
1
]
\begin{aligned} G(z) &= (1-z^{-1}) \mathbb{Z} \left[ \frac{G(s)}{s}\right] \\ &= (1-z^{-1}) \mathbb{Z} \left[ \frac{1}{s^2(s+1)}\right] \\ &= (1-z^{-1}) \mathbb{Z} \left[ \frac{1}{s^2} - \frac{1}{s} - \frac{1}{s+1} \right] \\ \end{aligned}
G(z)=(1−z−1)Z[sG(s)]=(1−z−1)Z[s2(s+1)1]=(1−z−1)Z[s21−s1−s+11]
查z变换表得到
G
(
z
)
=
T
z
−
1
−
1
+
z
−
1
z
−
e
−
T
=
(
T
−
1
+
e
−
T
)
z
−
(
T
+
1
)
e
−
T
+
1
z
−
2
−
(
1
+
e
−
T
)
z
+
e
−
T
\begin{aligned} G(z) &= \frac{T}{z-1} -1 + \frac{z-1}{z-e^{-T}} \\ &= \frac{(T-1+e^{-T})z - (T+1)e^{-T} + 1} {z^{-2} - (1+e^{-T})z + e^{-T}} \end{aligned}
G(z)=z−1T−1+z−e−Tz−1=z−2−(1+e−T)z+e−T(T−1+e−T)z−(T+1)e−T+1
零极点匹配法
零极点匹配法分成两步
-
根据定义 z = e T s z=e^{Ts} z=eTs,可以将 s s s平面的零点( s = − z i s=-z_{i} s=−zi)和极点( s = − p i s=-p_{i} s=−pi)一一对应地映射到z平面上的零点( z = e − z i T z=e^{-z_iT} z=e−ziT)和极点( z = e − p i T z=e^{-p_iT} z=e−piT),其中 T T T为采样周期.
-
使用某特征频率(如 w = 0 w=0 w=0处),通过变换前后两者的增益匹配,确定稳态增益:
G ( s ) ∣ s = 0 = G ( z ) ∣ z = 1 G(s)|_{s=0} = G(z)|_{z=1} G(s)∣s=0=G(z)∣z=1
各种方法的特点
用得到的 z z z变换表
拉氏变换 E ( s ) E(s) E(s) | 时间函数 e ( t ) e(t) e(t) | z变换 E ( s ) E(s) E(s) |
---|---|---|
1 s \frac{1}{s} s1 | 1 ( t ) 1(t) 1(t) | z z − 1 \frac{z}{z-1} z−1z |
1 s + a \frac{1}{s+a} s+a1 | e − a t e^{-at} e−at | z z − e − a T \frac{z}{z-e^{-aT}} z−e−aTz |
1 s 2 \frac{1}{s^2} s21 | T T T | T z ( z − 1 ) 2 \frac{Tz}{(z-1)^2} (z−1)2Tz |
1 ( s + a ) 2 \frac{1}{(s+a)^2} (s+a)21 | t e − a t te^{-at} te−at | T z e − a T ( z − e − a T ) 2 \frac{Tze^{-aT}}{(z-e^{-aT})^2} (z−e−aT)2Tze−aT |
双线性变换法只能由 z z z变换转换为 s s s变换,其逆变换不保证稳定性.
§2.4.线性离散控制系统的稳定性分析
稳定条件
- 稳定条件: 先行离散系统稳定的充分必要条件是特征方程的全部根或闭环z传递函数 G c ( z ) Gc(z) Gc(z)的全部极点 z i z_i zi都分布在z平面上以原点为圆心的单位圆内.
- 在先行离散控制系统的设计中,为使闭环系统具有满意的过渡过程,闭环零点应尽量避免分布在z平面单位圆内的左半部,尤其不要靠近负实轴.闭环极点最好分布在单位圆内的右半部,理想的位置是在单位圆内正实轴并靠近原点,因为这时 ∣ z i ∣ |z_i| ∣zi∣值很小,暂态分量衰减快,离散系统具有快速响应输入信号的能力.
- 稳定性的根判别法
稳定性判据(☆)
-
w w w平面上的劳斯判据:
可以通过变换将 z z z表达式转换为 w w w表达式:
z = w + 1 w − 1 z = \frac{w+1}{w-1} z=w−1w+1劳斯判据的要求:
-
特征方程所有系数均为正数.
-
建立劳斯表:
对于特征方程式: a 5 s 5 + a 4 s 4 + a 3 s 3 + a 2 s 2 + a 1 s + a 0 = 0 a_5s^5 + a_4s^4 + a_3s^3 + a_2s^2 +a_1s + a_0 = 0 a5s5+a4s4+a3s3+a2s2+a1s+a0=0
s 5 s^5 s5 a 5 a_5 a5 a 3 a_3 a3 a 1 a_1 a1 s 4 s^4 s4 a 4 a_4 a4 a 2 a_2 a2 a 0 a_0 a0 s 3 s^3 s3 A 1 = a 4 a 3 − a 5 a 2 a 4 A_1 = \frac{a_4 a_3 - a_5 a_2}{a_4} A1=a4a4a3−a5a2 A 2 = a 4 a 1 − a 5 a 0 a 4 A_2 = \frac{a_4 a_1 - a_5 a_0}{a_4} A2=a4a4a1−a5a0 0 0 0 s 2 s^2 s2 B 1 = A 1 a 2 − a 4 A 2 A 1 B_1 = \frac{A_1 a_2 - a_4 A_2}{A_1} B1=A1A1a2−a4A2 B 2 = A 1 a 0 − 0 A 1 = a 0 B_2 = \frac{A_1 a_0 - 0}{A_1} = a_0 B2=A1A1a0−0=a0 0 0 0 s 1 s^1 s1 C 1 = B 1 A 2 − A 1 B 2 B 1 C_1 = \frac{B_1 A_2 - A_1 B_2}{B_1} C1=B1B1A2−A1B2 0 0 0 0 0 0 s 0 s^0 s0 D 1 = C 1 B 2 − 0 C 1 = B 2 D_1 = \frac{C_1 B_2 - 0}{C_1} = B_2 D1=C1C1B2−0=B2 0 0 0 0 0 0 要求劳斯表第一列均为正数,则系统稳定.
-
-
z z z平面上的鞠利判据
第三章 过程计算机系统的抗干扰技术
§3.6.数字滤波技术
- 数字滤波技术的概念和特点:
- 概念: 在计算机系统中对输入信号采样多次,然后用某种计算方法对信号进行处理,以削弱或滤除干扰噪声从而获得真实信号的过程
- 特点
- 不涉及硬件设备,可靠性高,稳定性好.
- 滤波参数修改容易便于灵活使用,且可多通道共用,成本很低.
- 可以对各种干扰信号,甚至极低频率的信号进行滤波.
- 占用CPU的机时.
- 数字滤波器的选择原则:
- 根据干扰特点选择滤波算法.
- 根据据实践检验.
- 考虑选择复合滤波方法.
- 滤波方法:
- 平均值滤波(包括: 算术平均滤波, 去极值平均滤波,加权平均滤波,滑动平均滤波)
- 限幅滤波与限速滤波(包括: 限幅滤波与限速滤波)
- 惯性滤波
第四章 过程输入输出通道
§4.3.模拟量输入通道
采样保持器
-
孔径误差: 转换期间引起的转换误差.
-
孔径误差的推导:
设模拟信号为
v f = V f sin 2 π f t v_f = V_f \sin 2\pi ft vf=Vfsin2πft其微分为
d v f / d t = 2 π f V f cos 2 π f t dv_f/dt = 2\pi f V_f \cos 2 \pi ft dvf/dt=2πfVfcos2πft最大变化率为
d v f d t ∣ max = 2 π f V f \left. \frac{dv_f}{dt} \right|_{\max} = 2 \pi f V_f dtdvf∣∣∣∣max=2πfVf在信号与横坐标交点处,信号的变化率最大,引起的信号误差最大,设孔径时间为 Δ t \Delta t Δt,则此时最大误差为.
Δ V = V f 2 π f Δ t \Delta V = V_f 2 \pi f \Delta t ΔV=Vf2πfΔt
-
例题1: 一个10位的AD转换器,若要求转换精度为0.1%,转换时间为10μs,则允许转换的正弦波模拟信号的最大频率为多少?
解:
Δ V = V f 2 π f Δ t f ≤ 1 2 π f Δ t ⋅ Δ V V f = 1 2 π × 10 × 1 0 − 6 ⋅ 0.1 % = 15.9 H z \Delta V = V_f 2 \pi f \Delta t \\ \begin{aligned} f &\le \frac{1}{2 \pi f \Delta t} \cdot \frac{\Delta V}{V_f} \\ &= \frac{1}{2 \pi \times 10 \times 10^{-6}} \cdot 0.1\% \\ &= 15.9Hz \end{aligned} ΔV=Vf2πfΔtf≤2πfΔt1⋅VfΔV=2π×10×10−61⋅0.1%=15.9Hz -
例题2: 为满足AD转换精度要求,希望在 Δ t \Delta t Δt时间内,信号变化幅度小于AD转换器的量化误差 Δ E \Delta E ΔE.对于一个12bit的AD转换器,若转换时间为100μs,基准电压为10.24V,求信号的最高变化频率?
解:
其量化误差
Δ E = 1 2 L S B = 1 2 × 10.24 × 1 0 3 2 12 = 1.25 m V \Delta E = \frac{1}{2} LSB = \frac{1}{2} \times \frac{10.24 \times 10^3}{2^{12}} = 1.25mV ΔE=21LSB=21×21210.24×103=1.25mV若 V f = 5 V V_f=5V Vf=5V,由此要求输入信号的最高变化频率
f max ≤ 1 2 π V f ⋅ Δ E Δ t ≈ 0.5 H z f_{\max} \le \frac{1}{2\pi V_f} \cdot \frac{\Delta E}{\Delta t} \approx 0.5Hz fmax≤2πVf1⋅ΔtΔE≈0.5Hz
AD转换器工作原理
逐位逼近式AD转换原理(☆)
当启动信号启动后,时钟信号在逻辑控制的作用下,将数字输出值从高到低每一位先置一,再置零,并将其转换为模拟量,与待测量相比较.对于当前位,若置零且转换为模拟量后大于待测量,则将当前位置0,否则置1.
双积分式AD转换原理(☆)
Σ-Δ式AD转换原理
电压/频率式AD转换原理
第八章 常规数字控制器的设计
§8.1.数字控制器的连续化设计
PID算法
- 比例调节的特点:
- 动作快,调节即使,迅速.
- 对干扰有很强的抑制作用.
- 调节过程结束,被调亮的偏差仍存在,存在静态偏差,因此被称为有差调节.
- 积分调节的特点:
- 只要偏差存在,积分控制作用一直增加,从而消除了静态误差,实现无差调节.
- 控制作用主要体现在调节过程的后期
- 微分调节的特点:
- 微分调节作用的大小仅与偏差信号的变化速度有关,而与偏差值的大小无关.
- 微分调节可以实现超前调节,有利于克服动态偏差,将大大改善调节过程.
- 微分调节的引入可以使控制系统的稳定性和准确性得以提高,可适当减小静态偏差,但不能完全消除静态偏差.
PID算法的改进
-
微分项的改进
- 实质: 通过低通滤波,克服微分对高频干扰敏感的不足.
- 措施有:
- 实际微分算法
- 对微分输入项进行低通滤波(如均值滤波,去极值滤波,限幅限速滤波等)
- 微分先行算法(只对被控量进行积分,不适用于副调节器)
-
积分项的改进
对PID算法积分项的改进主要有积分分离算法和抗积分饱和算法
-
积分分离算法: 积分控制的主要作用在于在控制的后期消除静态偏差.因此积分分离算法在偏差大时不积分,当偏差小于阈值时,才开始积分.即:
- 当 ∣ e ( k ) ∣ ≥ β |e(k)| \ge \beta ∣e(k)∣≥β时,采用PD控制.
- 当 ∣ e ( k ) ∣ ≤ β |e(k)| \le \beta ∣e(k)∣≤β时,采用PID控制.
积分分离算法的优点: 减小系统的超调量,容易使系统稳定,提高了控制系统的品质.
-
抗积分饱和算法: 积分饱和指的是在单方面偏差信号的长时间作用下积分过量,输出达到上限值或下限值.抗积分饱和算法对输出限幅,输出超限时不积分,在输出达到限幅值时中断积分动作,使得输出维持在饱和线上.即:
- 当 ∣ u ( k ) ∣ ≥ u m a x |u(k)| \ge u_{max} ∣u(k)∣≥umax时,采用PD控制.
- 当 ∣ u ( k ) ∣ ≤ u m a x |u(k)| \le u_{max} ∣u(k)∣≤umax时,采用PD控制.
- 其他情况下,采用PID控制.
积分分离算法和抗积分饱和算法的对比:
- 相同点: 在某种状态下,切除积分作用.
- 不同点: 抗积分饱和算法根据最后的控制输出越限状态;积分分离根据偏差是否超出预设的分离值.
-
控制器参数的整定
有两大类整定方法:
- 理论计算整定方法:
- 依据系统的数学模型,经理论计算确定控制器参数.
- 所得数据不可以直接使用,必须通过工程实际进行调整和修改.
- 工程整定方法:
- 依赖工程经验,直接在控制系统的实验中进行,且方法简单,易于掌握.
- 近似的经验方法,不依赖模型.
扩充临界比例带法:
- 选试验采样周期: 小于对象纯滞后时间的1/10.
- 闭环临界振荡试验: 做纯比例控制,逐渐缩小比例度δ=1/kp使系统临界震荡,此时的比例度和振荡周期是临界比例度δk和临界振荡周期Tk.
- 选择控制度: 所谓控制度是以模拟调节系统为基准,将系统的控制效果与模拟调节器的控制效果相比较,比值为控制度.
- 查表求得整定参数: 多个参数整定简化为一个参数Kp整定.
- 现场投运,参数调整.
§8.2.数字控制器的离散化设计
直接离散设计的基本原理
理想最少拍控制系统的设计
该系统的闭环脉冲传递函数
ϕ
(
z
)
\phi(z)
ϕ(z)
ϕ
(
z
)
=
Y
(
z
)
R
(
z
)
=
D
(
z
)
G
(
z
)
1
+
D
(
z
)
G
(
z
)
\phi(z) = \frac{Y(z)}{R(z)} = \frac{D(z)G(z)}{1+D(z)G(z)}
ϕ(z)=R(z)Y(z)=1+D(z)G(z)D(z)G(z)
误差脉冲传递函数为
ϕ
e
(
z
)
\phi_e(z)
ϕe(z)
ϕ
e
(
z
)
=
E
(
z
)
R
(
z
)
=
1
1
+
D
(
z
)
G
(
z
)
=
1
−
ϕ
(
z
)
\phi_e(z) = \frac{E(z)}{R(z)} = \frac{1}{1+D(z)G(z)} = 1 - \phi(z)
ϕe(z)=R(z)E(z)=1+D(z)G(z)1=1−ϕ(z)
因此得到数字控制器的闭环脉冲传递函数
D
(
z
)
D(z)
D(z)
D
(
z
)
=
1
−
ϕ
e
(
z
)
G
(
z
)
ϕ
e
(
z
)
=
ϕ
(
z
)
G
(
z
)
ϕ
e
(
z
)
D(z) = \frac {1-\phi_e(z)}{G(z)\phi_e(z)}= \frac {\phi(z)}{G(z)\phi_e(z)}
D(z)=G(z)ϕe(z)1−ϕe(z)=G(z)ϕe(z)ϕ(z)
因此对于各种典型输入,得到对应的最少拍控制系统的脉冲传递函数如下:
典型输入 r ( t ) r(t) r(t) | 误差脉冲传递函数 ϕ e ( z ) \phi_e(z) ϕe(z) | 闭环脉冲传递函数 ϕ ( z ) \phi(z) ϕ(z) | 最少拍调节器 D ( z ) D(z) D(z) | 调节时间 |
---|---|---|---|---|
1 ( t ) 1(t) 1(t) | 1 − z − 1 1-z^{-1} 1−z−1 | z − 1 z^{-1} z−1 | z − 1 ( 1 − z − 1 ) G ( z ) \frac{z^{-1}}{(1-z^{-1})G(z)} (1−z−1)G(z)z−1 | T T T |
t t t | ( 1 − z − 1 ) 2 (1-z^{-1})^2 (1−z−1)2 | 2 z − 1 − z − 2 2z^{-1}-z^{-2} 2z−1−z−2 | 2 z − 1 − z − 2 ( 1 − z − 1 ) 2 G ( z ) \frac{2z^{-1}-z^{-2}}{(1-z^{-1})^2G(z)} (1−z−1)2G(z)2z−1−z−2 | 2 T 2T 2T |
1 2 t 2 \frac{1}{2} t^2 21t2 | ( 1 − z − 1 ) 3 (1-z^{-1})^3 (1−z−1)3 | 3 z − 1 − 3 z − 2 + z − 3 3z^{-1}-3z^{-2}+z{-3} 3z−1−3z−2+z−3 | 3 z − 1 − 3 z − 2 + z − 3 ( 1 − z − 1 ) 3 G ( z ) \frac{3z^{-1}-3z^{-2}+z{-3}}{(1-z^{-1})^3G(z)} (1−z−1)3G(z)3z−1−3z−2+z−3 | 3 T 3T 3T |
实际最少拍控制器的设计
- 为了实现无静差调节,取 Φ e ( z ) = ( 1 − z − 1 ) N F ( z ) \Phi_e(z) = (1 - z^{-1})^N F(z) Φe(z)=(1−z−1)NF(z),引入 F ( z ) F(z) F(z)是为了补齐 z z z的次数,使 Φ ( z ) \Phi(z) Φ(z)和 Φ e ( z ) \Phi_e(z) Φe(z)为同阶多项式, F ( z ) F(z) F(z)应尽量简单.
- 为保证稳定性, Φ e ( z ) \Phi_e(z) Φe(z)的零点应包含 G ( z ) G(z) G(z)的所有不稳定极点.
- 为保证控制器 D ( z ) D(z) D(z)在物理上的可实现性, G ( z ) G(z) G(z)的所有不稳定零点和滞后因子均应包含在闭环脉冲传递函数 Φ ( z ) \Phi(z) Φ(z)中.
- 为实现最少拍控制, F ( z ) F(z) F(z)应尽量简单. F ( z ) F(z) F(z)的选择要满足恒等式 Φ e ( z ) + Φ ( z ) ≡ 1 \Phi_e(z)+\Phi(z) \equiv 1 Φe(z)+Φ(z)≡1.
- 将 Φ e ( z ) \Phi_e(z) Φe(z)和 Φ ( z ) \Phi(z) Φ(z)代入 D ( z ) D(z) D(z)表达式 D ( z ) = 1 − ϕ e ( z ) G ( z ) ϕ e ( z ) = ϕ ( z ) G ( z ) ϕ e ( z ) D(z) = \frac{1-\phi_e(z)}{G(z)\phi_e(z)}= \frac{\phi(z)}{G(z)\phi_e(z)} D(z)=G(z)ϕe(z)1−ϕe(z)=G(z)ϕe(z)ϕ(z)中,求出 D ( z ) D(z) D(z)
例题: 设被控对象的传递函数 G p ( s ) = 10 s ( 0.1 s + 1 ) ( 0.05 s + 1 ) G_p(s) = \frac{10}{s(0.1s+1)(0.05s+1)} Gp(s)=s(0.1s+1)(0.05s+1)10,采样周期 T = 0.2 s T=0.2s T=0.2s,试求在单位阶跃输入下设计最少拍数字控制器 D ( z ) D(z) D(z).
解: 被控对象与零阶保持器的等效脉冲传递函数为
G ( z ) = ( 1 − z − 1 ) Z [ G p ( s ) s ] = ( 1 − z − 1 ) Z [ 10 s 2 ( 0.1 s + 1 ) ( 0.05 s + 1 ) ] = 0.76 z − 1 ( 1 + 0.05 z − 1 ) ( 1 + 1.065 z − 1 ) ( 1 − z − 1 ) ( 1 − 0.135 z − 1 ) ( 1 − 0.0185 z − 1 ) \begin{aligned} G(z) &= (1-z^{-1}) \mathbb{Z} \left[\frac{G_p(s)}{s}\right] = (1-z^{-1}) \mathbb{Z} \left[\frac{10}{s^2 (0.1s+1) (0.05s+1)}\right] \\ &= \frac{0.76z^{-1}(1+0.05z^{-1})(1+1.065z^{-1})}{(1-z^{-1})(1-0.135z^{-1})(1-0.0185z^{-1})} \end{aligned} G(z)=(1−z−1)Z[sGp(s)]=(1−z−1)Z[s2(0.1s+1)(0.05s+1)10]=(1−z−1)(1−0.135z−1)(1−0.0185z−1)0.76z−1(1+0.05z−1)(1+1.065z−1)
G ( z ) G(z) G(z)的表达式存在一个零点 z = − 1.065 z=-1.065 z=−1.065在单位圆外和一个滞后因子 z − 1 z^{-1} z−1.
根据最少拍系统的限制条件,可假设
Φ
e
(
z
)
=
(
1
−
z
−
1
)
F
(
z
)
Φ
(
z
)
=
a
z
−
1
(
1
+
1.065
z
−
1
)
\begin{aligned} \Phi_e(z) &= (1-z^{-1})F(z) \\ \Phi(z) &= az^{-1}(1+1.065z^{-1}) \end{aligned}
Φe(z)Φ(z)=(1−z−1)F(z)=az−1(1+1.065z−1)
由
Φ
e
(
z
)
+
Φ
(
z
)
=
1
\Phi_e(z)+\Phi(z) = 1
Φe(z)+Φ(z)=1可知,
Φ
e
(
z
)
\Phi_e(z)
Φe(z)和
Φ
(
z
)
\Phi(z)
Φ(z)应该是同阶次多项式,且尽可能简单,故可取
F
(
z
)
=
(
1
−
b
z
−
1
)
F(z) = (1-bz^{-1})
F(z)=(1−bz−1)
将
Φ
e
(
z
)
\Phi_e(z)
Φe(z)和
Φ
(
z
)
\Phi(z)
Φ(z)代入
Φ
e
(
z
)
+
Φ
(
z
)
≡
1
\Phi_e(z)+\Phi(z) \equiv 1
Φe(z)+Φ(z)≡1,可得
(
1
−
z
−
1
)
(
1
−
b
z
−
1
)
+
a
z
−
1
(
1
+
1.065
z
−
1
)
=
1
(1-z^{-1})(1-bz^{-1}) + az^{-1}(1+1.065z^{-1}) = 1
(1−z−1)(1−bz−1)+az−1(1+1.065z−1)=1
解得
a
=
0.484
,
b
=
0.516
a=0.484, b=0.516
a=0.484,b=0.516
可知
Φ
e
(
z
)
=
(
1
−
z
−
1
)
(
1
+
0.516
z
−
1
)
Φ
(
z
)
=
0.484
z
−
1
(
1
+
1.065
z
−
1
)
\begin{aligned} \Phi_e(z) &= (1-z^{-1})(1+0.516z^{-1}) \\ \Phi(z) &= 0.484 z^{-1}(1+1.065z^{-1}) \end{aligned}
Φe(z)Φ(z)=(1−z−1)(1+0.516z−1)=0.484z−1(1+1.065z−1)
将
Φ
e
(
z
)
\Phi_e(z)
Φe(z)和
Φ
(
z
)
\Phi(z)
Φ(z)代入
D
(
z
)
D(z)
D(z)表达式
D
(
z
)
=
1
−
ϕ
e
(
z
)
G
(
z
)
ϕ
e
(
z
)
=
ϕ
(
z
)
G
(
z
)
ϕ
e
(
z
)
D(z) = \frac{1-\phi_e(z)}{G(z)\phi_e(z)}= \frac{\phi(z)}{G(z)\phi_e(z)}
D(z)=G(z)ϕe(z)1−ϕe(z)=G(z)ϕe(z)ϕ(z)中,可得
D
(
z
)
=
ϕ
(
z
)
G
(
z
)
ϕ
e
(
z
)
=
0.484
z
−
1
(
1
+
1.065
z
−
1
)
(
1
−
z
−
1
)
(
1
+
0.516
z
−
1
)
=
0.636
(
1
−
0.0185
z
−
1
)
(
1
−
0.0135
z
−
1
)
(
1
+
0.05
z
−
1
)
(
1
+
0.516
z
−
1
)
\begin{aligned} D(z) &= \frac{\phi(z)}{G(z)\phi_e(z)} \\ &= \frac{0.484 z^{-1}(1+1.065z^{-1})}{(1-z^{-1})(1+0.516z^{-1})} \\ &= \frac{0.636 (1-0.0185z^{-1}) (1 - 0.0135z^{-1})}{(1+0.05z^{-1})(1+0.516z^{-1})} \end{aligned}
D(z)=G(z)ϕe(z)ϕ(z)=(1−z−1)(1+0.516z−1)0.484z−1(1+1.065z−1)=(1+0.05z−1)(1+0.516z−1)0.636(1−0.0185z−1)(1−0.0135z−1)
验证输出: 系统经
D
(
z
)
D(z)
D(z)数字校正后,在单位阶跃输入作用下,系统输出响应为
Y
(
z
)
=
Φ
(
z
)
R
(
z
)
=
0.484
z
−
1
(
1
+
1.065
z
−
1
)
⋅
1
1
−
z
−
1
=
0.484
z
−
1
+
z
−
2
+
z
−
3
+
.
.
.
\begin{aligned} Y(z) &= \Phi(z) R(z) = 0.484z^{-1}(1+1.065z^{-1}) \cdot \frac{1}{1-z^{-1}} \\ &= 0.484z^{-1} + z^{-2} + z^{-3} + ... \end{aligned}
Y(z)=Φ(z)R(z)=0.484z−1(1+1.065z−1)⋅1−z−11=0.484z−1+z−2+z−3+...
上式说明输出响应 y ( k ) y(k) y(k)经两拍后,完全跟踪输入,稳态误差为零.显然,由于有单位圆外的零点,响应时间比理想控制器增加了一拍.
验证误差:
E
(
z
)
=
Φ
e
(
z
)
R
(
z
)
=
(
1
−
z
−
1
)
(
1
+
0.516
z
−
1
)
⋅
1
1
−
z
−
1
=
1
+
0.516
z
−
1
\begin{aligned} E(z) &= \Phi_e(z) R(z) = (1-z^{-1})(1+0.516z^{-1}) \cdot \frac{1}{1-z^{-1}} \\ &= 1+0.516z^{-1} \end{aligned}
E(z)=Φe(z)R(z)=(1−z−1)(1+0.516z−1)⋅1−z−11=1+0.516z−1
最少拍无纹波控制器的设计
要实现无纹波控制,除了上一节实际无纹波控制器的条件之外,对闭环脉冲传递函数 Φ ( z ) \Phi(z) Φ(z)的选取提出了更加苛刻的要求,要求 Φ ( z ) \Phi(z) Φ(z)的零点应包含 G ( z ) G(z) G(z)的全部零点和滞后因子.
- 为了实现无静差调节,取 Φ e ( z ) = ( 1 − z − 1 ) N F ( z ) \Phi_e(z) = (1 - z^{-1})^N F(z) Φe(z)=(1−z−1)NF(z),引入 F ( z ) F(z) F(z)是为了补齐 z z z的次数,使 Φ ( z ) \Phi(z) Φ(z)和 Φ e ( z ) \Phi_e(z) Φe(z)为同阶多项式, F ( z ) F(z) F(z)应尽量简单.
- 为保证稳定性, Φ e ( z ) \Phi_e(z) Φe(z)的零点应包含 G ( z ) G(z) G(z)的所有不稳定极点.
- 为保证控制器 D ( z ) D(z) D(z)在物理上的可实现性, G ( z ) G(z) G(z)的**全部零点**和滞后因子均应包含在闭环脉冲传递函数 Φ ( z ) \Phi(z) Φ(z)中.
- 为实现最少拍控制, F ( z ) F(z) F(z)应尽量简单. F ( z ) F(z) F(z)的选择要满足恒等式 Φ e ( z ) + Φ ( z ) ≡ 1 \Phi_e(z)+\Phi(z) \equiv 1 Φe(z)+Φ(z)≡1.
- 将 Φ e ( z ) \Phi_e(z) Φe(z)和 Φ ( z ) \Phi(z) Φ(z)代入 D ( z ) D(z) D(z)表达式 D ( z ) = 1 − ϕ e ( z ) G ( z ) ϕ e ( z ) = ϕ ( z ) G ( z ) ϕ e ( z ) D(z) = \frac{1-\phi_e(z)}{G(z)\phi_e(z)}= \frac{\phi(z)}{G(z)\phi_e(z)} D(z)=G(z)ϕe(z)1−ϕe(z)=G(z)ϕe(z)ϕ(z)中,求出 D ( z ) D(z) D(z)
例题: 设被控对象的传递函数 G ( z ) = 3.68 z − 1 ( 1 + 0.718 z − 1 ) ( 1 − z − 1 ) ( 1 − 0.368 z − 1 ) G(z) = \frac{3.68z^{-1} (1+0.718z^{-1})}{(1-z^{-1})(1-0.368z^{-1})} G(z)=(1−z−1)(1−0.368z−1)3.68z−1(1+0.718z−1),试求在单位阶跃输入下设计最少拍无纹波数字控制器 D ( z ) D(z) D(z).
解: G ( z ) G(z) G(z)的表达式在由一个零点 z = − 0.718 z=-0.718 z=−0.718和一个滞后因子 z − 1 z^{-1} z−1.
根据最少拍系统的限制条件,可假设
Φ
e
(
z
)
=
(
1
−
z
−
1
)
(
1
+
a
z
−
1
)
Φ
(
z
)
=
b
z
−
1
(
1
+
0.718
z
−
1
)
\begin{aligned} \Phi_e(z) &= (1-z^{-1})(1+az^{-1}) \\ \Phi(z) &= bz^{-1}(1+0.718z^{-1}) \end{aligned}
Φe(z)Φ(z)=(1−z−1)(1+az−1)=bz−1(1+0.718z−1)
将
Φ
e
(
z
)
\Phi_e(z)
Φe(z)和
Φ
(
z
)
\Phi(z)
Φ(z)代入
Φ
e
(
z
)
+
Φ
(
z
)
≡
1
\Phi_e(z)+\Phi(z) \equiv 1
Φe(z)+Φ(z)≡1,可解得
a
=
0.418
,
b
=
0.582
a=0.418, b=0.582
a=0.418,b=0.582
可知
Φ
e
(
z
)
=
(
1
−
z
−
1
)
(
1
+
0.0.41
8
−
1
)
Φ
(
z
)
=
0.582
z
−
1
(
1
+
0.71
8
−
1
)
\begin{aligned} \Phi_e(z) &= (1-z^{-1})(1+0.0.418^{-1}) \\ \Phi(z) &= 0.582 z^{-1}(1+0.718^{-1}) \end{aligned}
Φe(z)Φ(z)=(1−z−1)(1+0.0.418−1)=0.582z−1(1+0.718−1)
将
Φ
e
(
z
)
\Phi_e(z)
Φe(z)和
Φ
(
z
)
\Phi(z)
Φ(z)代入
D
(
z
)
D(z)
D(z)表达式
D
(
z
)
=
1
−
ϕ
e
(
z
)
G
(
z
)
ϕ
e
(
z
)
=
ϕ
(
z
)
G
(
z
)
ϕ
e
(
z
)
D(z) = \frac{1-\phi_e(z)}{G(z)\phi_e(z)}= \frac{\phi(z)}{G(z)\phi_e(z)}
D(z)=G(z)ϕe(z)1−ϕe(z)=G(z)ϕe(z)ϕ(z)中,可得
D
(
z
)
=
ϕ
(
z
)
G
(
z
)
ϕ
e
(
z
)
=
0.158
(
1
−
0.368
z
−
1
)
1
+
0.418
z
−
1
\begin{aligned} D(z) &= \frac{\phi(z)}{G(z)\phi_e(z)} \\ &= \frac{0.158 (1-0.368z^{-1})}{1+0.418z^{-1}} \end{aligned}
D(z)=G(z)ϕe(z)ϕ(z)=1+0.418z−10.158(1−0.368z−1)
验证输出: 系统经
D
(
z
)
D(z)
D(z)数字校正后,在单位阶跃输入作用下,系统输出响应为
Y
(
z
)
=
Φ
(
z
)
R
(
z
)
=
0.582
z
−
1
(
1
+
0.718
z
−
1
)
⋅
1
1
−
z
−
1
=
0.582
z
−
1
+
z
−
2
+
z
−
3
+
.
.
.
\begin{aligned} Y(z) &= \Phi(z) R(z) = 0.582z^{-1}(1+0.718z^{-1}) \cdot \frac{1}{1-z^{-1}} \\ &= 0.582z^{-1} + z^{-2} + z^{-3} + ... \end{aligned}
Y(z)=Φ(z)R(z)=0.582z−1(1+0.718z−1)⋅1−z−11=0.582z−1+z−2+z−3+...
验证误差:
E
(
z
)
=
Φ
e
(
z
)
R
(
z
)
=
(
1
−
z
−
1
)
(
1
+
0.418
z
−
1
)
⋅
1
1
−
z
−
1
=
1
+
0.418
z
−
1
\begin{aligned} E(z) &= \Phi_e(z) R(z) = (1-z^{-1})(1+0.418z^{-1}) \cdot \frac{1}{1-z^{-1}} \\ &= 1+0.418z^{-1} \end{aligned}
E(z)=Φe(z)R(z)=(1−z−1)(1+0.418z−1)⋅1−z−11=1+0.418z−1
验证无纹波:
U
(
z
)
=
D
(
z
)
E
(
z
)
=
D
(
z
)
Φ
e
(
z
)
R
(
z
)
=
0.158
−
0.0581
z
−
1
\begin{aligned} U(z) &= D(z) E(z) = D(z) \Phi_e(z) R(z) \\ &= 0.158-0.0581z^{-1} \end{aligned}
U(z)=D(z)E(z)=D(z)Φe(z)R(z)=0.158−0.0581z−1
可见,控制信号在第二拍后, u ( 2 ) = u ( 3 ) = . . . = 0 u(2)=u(3)=...=0 u(2)=u(3)=...=0,进入稳态,故保证了系统无输出纹波.
§8.3.纯滞后控制
大林控制算法
-
大林算法的基本形式
对于一个纯滞后对象 G ( s ) = K e − τ s T 1 s + 1 G(s)=\frac{K e^{-\tau s}}{T_1s+1} G(s)=T1s+1Ke−τs,其中 T 1 T_1 T1为被控对象的时间常数, τ \tau τ为纯滞后实践,且 τ \tau τ为采样周期 T T T的整数倍,即 τ = N T \tau=NT τ=NT.计算数字控制器 D ( z ) D(z) D(z)的步骤如下:
-
理想的闭环传递函数 Φ ( s ) = e − τ s T 0 s + 1 \Phi(s)=\frac{e^{-\tau s}}{T_0 s+ 1} Φ(s)=T0s+1e−τs,将其离散化:
Φ ( z ) = ( 1 − z − 1 ) Z [ e − N T s s ( T 0 s + 1 ) ] = z − N ⋅ ( 1 − z − 1 ) ⋅ ( 1 − e − T / T 0 ) z − 1 ( 1 − z − 1 ) ( 1 − e − T / T 0 z − 1 ) = z − ( N + 1 ) ⋅ ( 1 − e − T / T 0 ) ( 1 − e − T / T 0 z − 1 ) \begin{aligned} \Phi(z) &= (1-z^{-1})\mathbb{Z}[\frac{e^{-NTs}}{s(T_0s+1)}] \\ &= z^{-N} \cdot (1-z^{-1}) \cdot \frac{(1-e^{-T/T_0})z^{-1}}{(1-z^{-1})(1-e^{-T/T_0}z^{-1})} \\ &= \frac{z^{-(N+1)} \cdot (1-e^{-T/T_0})}{(1-e^{-T/T_0}z^{-1})} \end{aligned} Φ(z)=(1−z−1)Z[s(T0s+1)e−NTs]=z−N⋅(1−z−1)⋅(1−z−1)(1−e−T/T0z−1)(1−e−T/T0)z−1=(1−e−T/T0z−1)z−(N+1)⋅(1−e−T/T0)
-
类似地,将 G ( s ) G(s) G(s)离散化,得到
G ( z ) = K z − ( N + 1 ) ⋅ ( 1 − e − T / T 1 ) ( 1 − e − T / T 1 z − 1 ) G(z) = K \frac{z^{-(N+1)} \cdot (1-e^{-T/T_1})}{(1-e^{-T/T_1}z^{-1})} G(z)=K(1−e−T/T1z−1)z−(N+1)⋅(1−e−T/T1) -
根据公式 D ( z ) = ϕ ( z ) G ( z ) ( 1 − ϕ ( z ) ) D(z) = \frac{\phi(z)}{G(z) (1 - \phi(z))} D(z)=G(z)(1−ϕ(z))ϕ(z),求 D ( z ) D(z) D(z):
D ( z ) = ϕ ( z ) G ( z ) ( 1 − ϕ ( z ) ) = z − ( N + 1 ) ⋅ ( 1 − e − T / T 0 ) ( 1 − e − T / T 0 z − 1 ) K z − ( N + 1 ) ⋅ ( 1 − e − T / T 1 ) ( 1 − e − T / T 1 z − 1 ) [ 1 − z − ( N + 1 ) ⋅ ( 1 − e − T / T 0 ) ( 1 − e − T / T 0 z − 1 ) ] = ( 1 − e − T / T 0 ) ( 1 − e − T / T 1 z − 1 ) K ( 1 − e − T / T 1 ) [ 1 − e − T / T 0 z − 1 − ( 1 − e − T / T 0 ) z − ( N + 1 ) ) ] \begin{aligned} D(z) &= \frac{\phi(z)}{G(z) (1 - \phi(z))} \\ &= \frac {\frac{z^{-(N+1)} \cdot (1-e^{-T/T_0})}{(1-e^{-T/T_0}z^{-1})}} { K \frac{z^{-(N+1)} \cdot (1-e^{-T/T_1})}{(1-e^{-T/T_1}z^{-1})} [1 - \frac{z^{-(N+1)} \cdot (1-e^{-T/T_0})}{(1-e^{-T/T_0}z^{-1})}] } \\ &= \frac {(1-e^{-T/T_0}) (1-e^{-T/T_1} z^{-1})} {K (1-e^{-T/T_1}) [1 -e^{-T/T_0} z^{-1} - (1 -e^{-T/T_0}) z^{-(N+1)})]} \end{aligned} D(z)=G(z)(1−ϕ(z))ϕ(z)=K(1−e−T/T1z−1)z−(N+1)⋅(1−e−T/T1)[1−(1−e−T/T0z−1)z−(N+1)⋅(1−e−T/T0)](1−e−T/T0z−1)z−(N+1)⋅(1−e−T/T0)=K(1−e−T/T1)[1−e−T/T0z−1−(1−e−T/T0)z−(N+1))](1−e−T/T0)(1−e−T/T1z−1)
-
-
振铃现象及其引起原因和消除方法?
- 采用大林算法构成闭环控制系统时计算机的输出 U ( z ) U(z) U(z)常会以 1 2 \frac{1}{2} 21采样频率大蝠上下振荡.这一震荡将使执行机构的磨损增加,而且影响控制质置,甚至可能破坏系统的稳定,必须加以消除。通常这一振荡现象被称为振铃现象。
- 振铃的根源是控制器 z = − 1 z=-1 z=−1附近的极点所致,且 z = − 1 z=-1 z=−1处振铃最严重.
- 一个切实可行的方法是先找到控制器中可能产生振铃的极点,然后令该极点的 z = 1 z=1 z=1.这样,既取消了这个极点,又不影响系统的稳态输出.
-
计算消除振铃后数字控制器的形式:
将上式中 D ( z ) D(z) D(z)因式分解,得到:
D ( z ) = ( 1 − e − T / T 0 ) ( 1 − e − T / T 1 z − 1 ) K ( 1 − e − T / T 1 ) ( 1 − z − 1 ) [ 1 + ( 1 − e − T / T 0 ) ( z − 1 + z − 2 + z − 3 + . . . + z − N ) ] \begin{aligned} D(z) &= \frac {(1-e^{-T/T_0}) (1-e^{-T/T_1} z^{-1})} {K (1-e^{-T/T_1}) (1-z^{-1}) [1 + (1 -e^{-T/T_0}) (z^{-1}+z^{-2}+z^{-3}+ ... +z^{-N})]} \end{aligned} D(z)=K(1−e−T/T1)(1−z−1)[1+(1−e−T/T0)(z−1+z−2+z−3+...+z−N)](1−e−T/T0)(1−e−T/T1z−1)显然存在极点 z = 1 z=1 z=1,不会引起振铃,可能引起振铃的因子是 [ 1 + ( 1 − e − T / T 0 ) ( z − 1 + z − 2 + z − 3 + . . . + z − N ) ] [1 + (1 -e^{-T/T_0}) (z^{-1}+z^{-2}+z^{-3}+ ... +z^{-N})] [1+(1−e−T/T0)(z−1+z−2+z−3+...+z−N)]项.下面对 N N N的取值进行分类讨论:
-
当 N = 0 N=0 N=0时,此因子不存在,无振铃可能.
-
当 N = 1 N=1 N=1时,有一个极点 z = − ( 1 − e − T / T 0 ) z=-(1 -e^{-T/T_0}) z=−(1−e−T/T0).在 T 0 ≪ T T_0\ll T T0≪T时,极点 z → − 1 z \rarr -1 z→−1,存在严重的振铃现象,为消除振铃,可令 z = 1 z=1 z=1.因子变为 1 + ( 1 − e − T / T 0 ) z − 1 = 2 − e − T / T 0 1 + (1 -e^{-T/T_0})z^{-1} = 2 -e^{-T/T_0} 1+(1−e−T/T0)z−1=2−e−T/T0,此时
D ( z ) = ( 1 − e − T / T 0 ) ( 1 − e − T / T 1 z − 1 ) K ( 1 − e − T / T 1 ) ( 1 − z − 1 ) ( 2 − e − T / T 0 ) \begin{aligned} D(z) &= \frac {(1-e^{-T/T_0}) (1-e^{-T/T_1} z^{-1})} {K (1-e^{-T/T_1}) (1-z^{-1}) (2 -e^{-T/T_0})} \end{aligned} D(z)=K(1−e−T/T1)(1−z−1)(2−e−T/T0)(1−e−T/T0)(1−e−T/T1z−1) -
当 N = 2 N=2 N=2时,令 z = 1 z=1 z=1,因子变为 1 + ( 1 − e − T / T 0 ) ( z − 1 + z − 2 ) = 3 − 2 e − T / T 0 1 + (1 -e^{-T/T_0}) (z^{-1}+z^{-2})= 3-2e^{-T/T_0} 1+(1−e−T/T0)(z−1+z−2)=3−2e−T/T0,此时
D ( z ) = ( 1 − e − T / T 0 ) ( 1 − e − T / T 1 z − 1 ) K ( 1 − e − T / T 1 ) ( 1 − z − 1 ) ( 3 − 2 e − T / T 0 ) \begin{aligned} D(z) &= \frac {(1-e^{-T/T_0}) (1-e^{-T/T_1} z^{-1})} {K (1-e^{-T/T_1}) (1-z^{-1}) (3 -2e^{-T/T_0})} \end{aligned} D(z)=K(1−e−T/T1)(1−z−1)(3−2e−T/T0)(1−e−T/T0)(1−e−T/T1z−1)
-
pdf版本笔记的下载地址: 控制装置与仪表随堂练习答案及知识点总结02(访问密码:3834)