控制装置与仪表随堂练习答案及知识点总结02

pdf版本笔记的下载地址: 控制装置与仪表随堂练习答案及知识点总结02(访问密码:3834)

第二章 计算机控制的理论基础

§2.2.连续模型与离散模型间的转换

常用方法有: 向后差分变换法,双线性变换法,零阶保持器法,零极点匹配法.

向后差分变换法

向后差分变换法中 s s s z z z之间的关系为:
s ≈ ( 1 − z − 1 ) / T s \approx (1-z^{-1})/T s(1z1)/T
其中 T T T为采样周期,因此向后差分变化法可表达为:
G ( z ) ≈ G ( s ) ∣ s = ( 1 − z − 1 ) / T G(z) \approx \left. G(s) \right| _{s=(1-z^{-1})/T} G(z)G(s)s=(1z1)/T

双线性变换法

双线性变换法中 s s s z z z之间的关系为:
z ≈ 1 + s T / 2 1 − s T / 2 s ≈ 2 T ⋅ 1 − z − 1 1 + z − 1 z \approx \frac{1+sT/2}{1-sT/2} \\ s \approx \frac{2}{T} \cdot \frac{1-z^{-1}}{1+z^{-1}} z1sT/21+sT/2sT21+z11z1
其中 T T T为采样周期,因此双线性变换法可表达为:
G ( z ) ≈ G ( s ) ∣ s = 2 T ⋅ 1 − z − 1 1 + z − 1 G ( s ) ≈ G ( z ) ∣ z = 1 + s T / 2 1 − s T / 2 G(z) \approx \left. G(s) \right| _{ s = \frac{2}{T} \cdot \frac{1-z^{-1}}{1+z^{-1}} } \\ G(s) \approx \left. G(z) \right| _{ z = \frac{1+sT/2}{1-sT/2} } G(z)G(s)s=T21+z11z1G(s)G(z)z=1sT/21+sT/2

零阶保持器法(☆)

G ( z ) = Z [ 1 − e − s T s ⋅ G ( s ) ] = ( 1 − z − 1 ) Z [ G ( s ) s ] \begin{aligned} G(z) &= \mathbb{Z} \left[ \frac{1-e^{-sT}}{s} \cdot G(s) \right] \\ &= (1-z^{-1}) \mathbb{Z} \left[ \frac{G(s)}{s} \right] \end{aligned} G(z)=Z[s1esTG(s)]=(1z1)Z[sG(s)]

例题: 已知 G ( s ) = 1 s ( s + 1 ) G(s)=\frac{1}{s(s+1)} G(s)=s(s+1)1,使用零阶保持器法求 G ( z ) G(z) G(z)?

解:
G ( z ) = ( 1 − z − 1 ) Z [ G ( s ) s ] = ( 1 − z − 1 ) Z [ 1 s 2 ( s + 1 ) ] = ( 1 − z − 1 ) Z [ 1 s 2 − 1 s − 1 s + 1 ] \begin{aligned} G(z) &= (1-z^{-1}) \mathbb{Z} \left[ \frac{G(s)}{s}\right] \\ &= (1-z^{-1}) \mathbb{Z} \left[ \frac{1}{s^2(s+1)}\right] \\ &= (1-z^{-1}) \mathbb{Z} \left[ \frac{1}{s^2} - \frac{1}{s} - \frac{1}{s+1} \right] \\ \end{aligned} G(z)=(1z1)Z[sG(s)]=(1z1)Z[s2(s+1)1]=(1z1)Z[s21s1s+11]
查z变换表得到
G ( z ) = T z − 1 − 1 + z − 1 z − e − T = ( T − 1 + e − T ) z − ( T + 1 ) e − T + 1 z − 2 − ( 1 + e − T ) z + e − T \begin{aligned} G(z) &= \frac{T}{z-1} -1 + \frac{z-1}{z-e^{-T}} \\ &= \frac{(T-1+e^{-T})z - (T+1)e^{-T} + 1} {z^{-2} - (1+e^{-T})z + e^{-T}} \end{aligned} G(z)=z1T1+zeTz1=z2(1+eT)z+eT(T1+eT)z(T+1)eT+1

零极点匹配法

零极点匹配法分成两步

  1. 根据定义 z = e T s z=e^{Ts} z=eTs,可以将 s s s平面的零点( s = − z i s=-z_{i} s=zi)和极点( s = − p i s=-p_{i} s=pi)一一对应地映射到z平面上的零点( z = e − z i T z=e^{-z_iT} z=eziT)和极点( z = e − p i T z=e^{-p_iT} z=epiT),其中 T T T为采样周期.

  2. 使用某特征频率(如 w = 0 w=0 w=0处),通过变换前后两者的增益匹配,确定稳态增益:
    G ( s ) ∣ s = 0 = G ( z ) ∣ z = 1 G(s)|_{s=0} = G(z)|_{z=1} G(s)s=0=G(z)z=1

各种方法的特点

用得到的 z z z变换表

拉氏变换 E ( s ) E(s) E(s)时间函数 e ( t ) e(t) e(t)z变换 E ( s ) E(s) E(s)
1 s \frac{1}{s} s1 1 ( t ) 1(t) 1(t) z z − 1 \frac{z}{z-1} z1z
1 s + a \frac{1}{s+a} s+a1 e − a t e^{-at} eat z z − e − a T \frac{z}{z-e^{-aT}} zeaTz
1 s 2 \frac{1}{s^2} s21 T T T T z ( z − 1 ) 2 \frac{Tz}{(z-1)^2} (z1)2Tz
1 ( s + a ) 2 \frac{1}{(s+a)^2} (s+a)21 t e − a t te^{-at} teat T z e − a T ( z − e − a T ) 2 \frac{Tze^{-aT}}{(z-e^{-aT})^2} (zeaT)2TzeaT

双线性变换法只能由 z z z变换转换为 s s s变换,其逆变换不保证稳定性.

§2.4.线性离散控制系统的稳定性分析

稳定条件

  1. 稳定条件: 先行离散系统稳定的充分必要条件是特征方程的全部根或闭环z传递函数 G c ( z ) Gc(z) Gc(z)的全部极点 z i z_i zi都分布在z平面上以原点为圆心的单位圆内.
  2. 在先行离散控制系统的设计中,为使闭环系统具有满意的过渡过程,闭环零点应尽量避免分布在z平面单位圆内的左半部,尤其不要靠近负实轴.闭环极点最好分布在单位圆内的右半部,理想的位置是在单位圆内正实轴并靠近原点,因为这时 ∣ z i ∣ |z_i| zi值很小,暂态分量衰减快,离散系统具有快速响应输入信号的能力.
  3. 稳定性的根判别法

稳定性判据(☆)

  • w w w平面上的劳斯判据:

    可以通过变换将 z z z表达式转换为 w w w表达式:
    z = w + 1 w − 1 z = \frac{w+1}{w-1} z=w1w+1

    劳斯判据的要求:

    1. 特征方程所有系数均为正数.

    2. 建立劳斯表:

      对于特征方程式: a 5 s 5 + a 4 s 4 + a 3 s 3 + a 2 s 2 + a 1 s + a 0 = 0 a_5s^5 + a_4s^4 + a_3s^3 + a_2s^2 +a_1s + a_0 = 0 a5s5+a4s4+a3s3+a2s2+a1s+a0=0

      s 5 s^5 s5 a 5 a_5 a5 a 3 a_3 a3 a 1 a_1 a1
      s 4 s^4 s4 a 4 a_4 a4 a 2 a_2 a2 a 0 a_0 a0
      s 3 s^3 s3 A 1 = a 4 a 3 − a 5 a 2 a 4 A_1 = \frac{a_4 a_3 - a_5 a_2}{a_4} A1=a4a4a3a5a2 A 2 = a 4 a 1 − a 5 a 0 a 4 A_2 = \frac{a_4 a_1 - a_5 a_0}{a_4} A2=a4a4a1a5a0 0 0 0
      s 2 s^2 s2 B 1 = A 1 a 2 − a 4 A 2 A 1 B_1 = \frac{A_1 a_2 - a_4 A_2}{A_1} B1=A1A1a2a4A2 B 2 = A 1 a 0 − 0 A 1 = a 0 B_2 = \frac{A_1 a_0 - 0}{A_1} = a_0 B2=A1A1a00=a0 0 0 0
      s 1 s^1 s1 C 1 = B 1 A 2 − A 1 B 2 B 1 C_1 = \frac{B_1 A_2 - A_1 B_2}{B_1} C1=B1B1A2A1B2 0 0 0 0 0 0
      s 0 s^0 s0 D 1 = C 1 B 2 − 0 C 1 = B 2 D_1 = \frac{C_1 B_2 - 0}{C_1} = B_2 D1=C1C1B20=B2 0 0 0 0 0 0

      要求劳斯表第一列均为正数,则系统稳定.

  • z z z平面上的鞠利判据

第三章 过程计算机系统的抗干扰技术

§3.6.数字滤波技术

  • 数字滤波技术的概念和特点:
    • 概念: 在计算机系统中对输入信号采样多次,然后用某种计算方法对信号进行处理,以削弱或滤除干扰噪声从而获得真实信号的过程
    • 特点
      1. 不涉及硬件设备,可靠性高,稳定性好.
      2. 滤波参数修改容易便于灵活使用,且可多通道共用,成本很低.
      3. 可以对各种干扰信号,甚至极低频率的信号进行滤波.
      4. 占用CPU的机时.
  • 数字滤波器的选择原则:
    • 根据干扰特点选择滤波算法.
    • 根据据实践检验.
    • 考虑选择复合滤波方法.
  • 滤波方法:
    1. 平均值滤波(包括: 算术平均滤波, 去极值平均滤波,加权平均滤波,滑动平均滤波)
    2. 限幅滤波与限速滤波(包括: 限幅滤波与限速滤波)
    3. 惯性滤波

第四章 过程输入输出通道

§4.3.模拟量输入通道

采样保持器

  • 孔径误差: 转换期间引起的转换误差.

    在这里插入图片描述

  • 孔径误差的推导:

    设模拟信号为
    v f = V f sin ⁡ 2 π f t v_f = V_f \sin 2\pi ft vf=Vfsin2πft

    其微分为
    d v f / d t = 2 π f V f cos ⁡ 2 π f t dv_f/dt = 2\pi f V_f \cos 2 \pi ft dvf/dt=2πfVfcos2πft

    最大变化率为
    d v f d t ∣ max ⁡ = 2 π f V f \left. \frac{dv_f}{dt} \right|_{\max} = 2 \pi f V_f dtdvfmax=2πfVf

    在信号与横坐标交点处,信号的变化率最大,引起的信号误差最大,设孔径时间为 Δ t \Delta t Δt,则此时最大误差为.
    Δ V = V f 2 π f Δ t \Delta V = V_f 2 \pi f \Delta t ΔV=Vf2πfΔt

  1. 例题1: 一个10位的AD转换器,若要求转换精度为0.1%,转换时间为10μs,则允许转换的正弦波模拟信号的最大频率为多少?

    解:
    Δ V = V f 2 π f Δ t f ≤ 1 2 π f Δ t ⋅ Δ V V f = 1 2 π × 10 × 1 0 − 6 ⋅ 0.1 % = 15.9 H z \Delta V = V_f 2 \pi f \Delta t \\ \begin{aligned} f &\le \frac{1}{2 \pi f \Delta t} \cdot \frac{\Delta V}{V_f} \\ &= \frac{1}{2 \pi \times 10 \times 10^{-6}} \cdot 0.1\% \\ &= 15.9Hz \end{aligned} ΔV=Vf2πfΔtf2πfΔt1VfΔV=2π×10×10610.1%=15.9Hz

  2. 例题2: 为满足AD转换精度要求,希望在 Δ t \Delta t Δt时间内,信号变化幅度小于AD转换器的量化误差 Δ E \Delta E ΔE.对于一个12bit的AD转换器,若转换时间为100μs,基准电压为10.24V,求信号的最高变化频率?

    解:

    其量化误差
    Δ E = 1 2 L S B = 1 2 × 10.24 × 1 0 3 2 12 = 1.25 m V \Delta E = \frac{1}{2} LSB = \frac{1}{2} \times \frac{10.24 \times 10^3}{2^{12}} = 1.25mV ΔE=21LSB=21×21210.24×103=1.25mV

    V f = 5 V V_f=5V Vf=5V,由此要求输入信号的最高变化频率
    f max ⁡ ≤ 1 2 π V f ⋅ Δ E Δ t ≈ 0.5 H z f_{\max} \le \frac{1}{2\pi V_f} \cdot \frac{\Delta E}{\Delta t} \approx 0.5Hz fmax2πVf1ΔtΔE0.5Hz

AD转换器工作原理

逐位逼近式AD转换原理(☆)

在这里插入图片描述

当启动信号启动后,时钟信号在逻辑控制的作用下,将数字输出值从高到低每一位先置一,再置零,并将其转换为模拟量,与待测量相比较.对于当前位,若置零且转换为模拟量后大于待测量,则将当前位置0,否则置1.

双积分式AD转换原理(☆)
Σ-Δ式AD转换原理
电压/频率式AD转换原理

第八章 常规数字控制器的设计

§8.1.数字控制器的连续化设计

PID算法

  • 比例调节的特点:
    1. 动作快,调节即使,迅速.
    2. 对干扰有很强的抑制作用.
    3. 调节过程结束,被调亮的偏差仍存在,存在静态偏差,因此被称为有差调节.
  • 积分调节的特点:
    1. 只要偏差存在,积分控制作用一直增加,从而消除了静态误差,实现无差调节.
    2. 控制作用主要体现在调节过程的后期
  • 微分调节的特点:
    1. 微分调节作用的大小仅与偏差信号的变化速度有关,而与偏差值的大小无关.
    2. 微分调节可以实现超前调节,有利于克服动态偏差,将大大改善调节过程.
    3. 微分调节的引入可以使控制系统的稳定性和准确性得以提高,可适当减小静态偏差,但不能完全消除静态偏差.

PID算法的改进

  1. 微分项的改进

    • 实质: 通过低通滤波,克服微分对高频干扰敏感的不足.
    • 措施有:
      • 实际微分算法
      • 对微分输入项进行低通滤波(如均值滤波,去极值滤波,限幅限速滤波等)
      • 微分先行算法(只对被控量进行积分,不适用于副调节器)
  2. 积分项的改进

    对PID算法积分项的改进主要有积分分离算法抗积分饱和算法

    • 积分分离算法: 积分控制的主要作用在于在控制的后期消除静态偏差.因此积分分离算法在偏差大时不积分,当偏差小于阈值时,才开始积分.即:

      • ∣ e ( k ) ∣ ≥ β |e(k)| \ge \beta e(k)β时,采用PD控制.
      • ∣ e ( k ) ∣ ≤ β |e(k)| \le \beta e(k)β时,采用PID控制.

      积分分离算法的优点: 减小系统的超调量,容易使系统稳定,提高了控制系统的品质.

    • 抗积分饱和算法: 积分饱和指的是在单方面偏差信号的长时间作用下积分过量,输出达到上限值或下限值.抗积分饱和算法对输出限幅,输出超限时不积分,在输出达到限幅值时中断积分动作,使得输出维持在饱和线上.即:

      • ∣ u ( k ) ∣ ≥ u m a x |u(k)| \ge u_{max} u(k)umax时,采用PD控制.
      • ∣ u ( k ) ∣ ≤ u m a x |u(k)| \le u_{max} u(k)umax时,采用PD控制.
      • 其他情况下,采用PID控制.

    积分分离算法和抗积分饱和算法的对比:

    • 相同点: 在某种状态下,切除积分作用.
    • 不同点: 抗积分饱和算法根据最后的控制输出越限状态;积分分离根据偏差是否超出预设的分离值.

控制器参数的整定

有两大类整定方法:

  • 理论计算整定方法:
    • 依据系统的数学模型,经理论计算确定控制器参数.
    • 所得数据不可以直接使用,必须通过工程实际进行调整和修改.
  • 工程整定方法:
    • 依赖工程经验,直接在控制系统的实验中进行,且方法简单,易于掌握.
    • 近似的经验方法,不依赖模型.

扩充临界比例带法:

  1. 选试验采样周期: 小于对象纯滞后时间的1/10.
  2. 闭环临界振荡试验: 做纯比例控制,逐渐缩小比例度δ=1/kp使系统临界震荡,此时的比例度和振荡周期是临界比例度δk和临界振荡周期Tk.
  3. 选择控制度: 所谓控制度是以模拟调节系统为基准,将系统的控制效果与模拟调节器的控制效果相比较,比值为控制度.
  4. 查表求得整定参数: 多个参数整定简化为一个参数Kp整定.
  5. 现场投运,参数调整.

§8.2.数字控制器的离散化设计

直接离散设计的基本原理

理想最少拍控制系统的设计

在这里插入图片描述

该系统的闭环脉冲传递函数 ϕ ( z ) \phi(z) ϕ(z)
ϕ ( z ) = Y ( z ) R ( z ) = D ( z ) G ( z ) 1 + D ( z ) G ( z ) \phi(z) = \frac{Y(z)}{R(z)} = \frac{D(z)G(z)}{1+D(z)G(z)} ϕ(z)=R(z)Y(z)=1+D(z)G(z)D(z)G(z)

误差脉冲传递函数为 ϕ e ( z ) \phi_e(z) ϕe(z)
ϕ e ( z ) = E ( z ) R ( z ) = 1 1 + D ( z ) G ( z ) = 1 − ϕ ( z ) \phi_e(z) = \frac{E(z)}{R(z)} = \frac{1}{1+D(z)G(z)} = 1 - \phi(z) ϕe(z)=R(z)E(z)=1+D(z)G(z)1=1ϕ(z)

因此得到数字控制器的闭环脉冲传递函数 D ( z ) D(z) D(z)
D ( z ) = 1 − ϕ e ( z ) G ( z ) ϕ e ( z ) = ϕ ( z ) G ( z ) ϕ e ( z ) D(z) = \frac {1-\phi_e(z)}{G(z)\phi_e(z)}= \frac {\phi(z)}{G(z)\phi_e(z)} D(z)=G(z)ϕe(z)1ϕe(z)=G(z)ϕe(z)ϕ(z)

因此对于各种典型输入,得到对应的最少拍控制系统的脉冲传递函数如下:

典型输入
r ( t ) r(t) r(t)
误差脉冲传递函数
ϕ e ( z ) \phi_e(z) ϕe(z)
闭环脉冲传递函数
ϕ ( z ) \phi(z) ϕ(z)
最少拍调节器
D ( z ) D(z) D(z)
调节时间
1 ( t ) 1(t) 1(t) 1 − z − 1 1-z^{-1} 1z1 z − 1 z^{-1} z1 z − 1 ( 1 − z − 1 ) G ( z ) \frac{z^{-1}}{(1-z^{-1})G(z)} (1z1)G(z)z1 T T T
t t t ( 1 − z − 1 ) 2 (1-z^{-1})^2 (1z1)2 2 z − 1 − z − 2 2z^{-1}-z^{-2} 2z1z2 2 z − 1 − z − 2 ( 1 − z − 1 ) 2 G ( z ) \frac{2z^{-1}-z^{-2}}{(1-z^{-1})^2G(z)} (1z1)2G(z)2z1z2 2 T 2T 2T
1 2 t 2 \frac{1}{2} t^2 21t2 ( 1 − z − 1 ) 3 (1-z^{-1})^3 (1z1)3 3 z − 1 − 3 z − 2 + z − 3 3z^{-1}-3z^{-2}+z{-3} 3z13z2+z3 3 z − 1 − 3 z − 2 + z − 3 ( 1 − z − 1 ) 3 G ( z ) \frac{3z^{-1}-3z^{-2}+z{-3}}{(1-z^{-1})^3G(z)} (1z1)3G(z)3z13z2+z3 3 T 3T 3T
实际最少拍控制器的设计
  1. 为了实现无静差调节,取 Φ e ( z ) = ( 1 − z − 1 ) N F ( z ) \Phi_e(z) = (1 - z^{-1})^N F(z) Φe(z)=(1z1)NF(z),引入 F ( z ) F(z) F(z)是为了补齐 z z z的次数,使 Φ ( z ) \Phi(z) Φ(z) Φ e ( z ) \Phi_e(z) Φe(z)为同阶多项式, F ( z ) F(z) F(z)应尽量简单.
  2. 为保证稳定性, Φ e ( z ) \Phi_e(z) Φe(z)的零点应包含 G ( z ) G(z) G(z)的所有不稳定极点.
  3. 为保证控制器 D ( z ) D(z) D(z)在物理上的可实现性, G ( z ) G(z) G(z)的所有不稳定零点和滞后因子均应包含在闭环脉冲传递函数 Φ ( z ) \Phi(z) Φ(z)中.
  4. 为实现最少拍控制, F ( z ) F(z) F(z)应尽量简单. F ( z ) F(z) F(z)的选择要满足恒等式 Φ e ( z ) + Φ ( z ) ≡ 1 \Phi_e(z)+\Phi(z) \equiv 1 Φe(z)+Φ(z)1.
  5. Φ e ( z ) \Phi_e(z) Φe(z) Φ ( z ) \Phi(z) Φ(z)代入 D ( z ) D(z) D(z)表达式 D ( z ) = 1 − ϕ e ( z ) G ( z ) ϕ e ( z ) = ϕ ( z ) G ( z ) ϕ e ( z ) D(z) = \frac{1-\phi_e(z)}{G(z)\phi_e(z)}= \frac{\phi(z)}{G(z)\phi_e(z)} D(z)=G(z)ϕe(z)1ϕe(z)=G(z)ϕe(z)ϕ(z)中,求出 D ( z ) D(z) D(z)

例题: 设被控对象的传递函数 G p ( s ) = 10 s ( 0.1 s + 1 ) ( 0.05 s + 1 ) G_p(s) = \frac{10}{s(0.1s+1)(0.05s+1)} Gp(s)=s(0.1s+1)(0.05s+1)10,采样周期 T = 0.2 s T=0.2s T=0.2s,试求在单位阶跃输入下设计最少拍数字控制器 D ( z ) D(z) D(z).

解: 被控对象与零阶保持器的等效脉冲传递函数为

G ( z ) = ( 1 − z − 1 ) Z [ G p ( s ) s ] = ( 1 − z − 1 ) Z [ 10 s 2 ( 0.1 s + 1 ) ( 0.05 s + 1 ) ] = 0.76 z − 1 ( 1 + 0.05 z − 1 ) ( 1 + 1.065 z − 1 ) ( 1 − z − 1 ) ( 1 − 0.135 z − 1 ) ( 1 − 0.0185 z − 1 ) \begin{aligned} G(z) &= (1-z^{-1}) \mathbb{Z} \left[\frac{G_p(s)}{s}\right] = (1-z^{-1}) \mathbb{Z} \left[\frac{10}{s^2 (0.1s+1) (0.05s+1)}\right] \\ &= \frac{0.76z^{-1}(1+0.05z^{-1})(1+1.065z^{-1})}{(1-z^{-1})(1-0.135z^{-1})(1-0.0185z^{-1})} \end{aligned} G(z)=(1z1)Z[sGp(s)]=(1z1)Z[s2(0.1s+1)(0.05s+1)10]=(1z1)(10.135z1)(10.0185z1)0.76z1(1+0.05z1)(1+1.065z1)

G ( z ) G(z) G(z)的表达式存在一个零点 z = − 1.065 z=-1.065 z=1.065在单位圆外和一个滞后因子 z − 1 z^{-1} z1.

根据最少拍系统的限制条件,可假设
Φ e ( z ) = ( 1 − z − 1 ) F ( z ) Φ ( z ) = a z − 1 ( 1 + 1.065 z − 1 ) \begin{aligned} \Phi_e(z) &= (1-z^{-1})F(z) \\ \Phi(z) &= az^{-1}(1+1.065z^{-1}) \end{aligned} Φe(z)Φ(z)=(1z1)F(z)=az1(1+1.065z1)

Φ e ( z ) + Φ ( z ) = 1 \Phi_e(z)+\Phi(z) = 1 Φe(z)+Φ(z)=1可知, Φ e ( z ) \Phi_e(z) Φe(z) Φ ( z ) \Phi(z) Φ(z)应该是同阶次多项式,且尽可能简单,故可取
F ( z ) = ( 1 − b z − 1 ) F(z) = (1-bz^{-1}) F(z)=(1bz1)

Φ e ( z ) \Phi_e(z) Φe(z) Φ ( z ) \Phi(z) Φ(z)代入 Φ e ( z ) + Φ ( z ) ≡ 1 \Phi_e(z)+\Phi(z) \equiv 1 Φe(z)+Φ(z)1,可得
( 1 − z − 1 ) ( 1 − b z − 1 ) + a z − 1 ( 1 + 1.065 z − 1 ) = 1 (1-z^{-1})(1-bz^{-1}) + az^{-1}(1+1.065z^{-1}) = 1 (1z1)(1bz1)+az1(1+1.065z1)=1

解得
a = 0.484 , b = 0.516 a=0.484, b=0.516 a=0.484,b=0.516

可知
Φ e ( z ) = ( 1 − z − 1 ) ( 1 + 0.516 z − 1 ) Φ ( z ) = 0.484 z − 1 ( 1 + 1.065 z − 1 ) \begin{aligned} \Phi_e(z) &= (1-z^{-1})(1+0.516z^{-1}) \\ \Phi(z) &= 0.484 z^{-1}(1+1.065z^{-1}) \end{aligned} Φe(z)Φ(z)=(1z1)(1+0.516z1)=0.484z1(1+1.065z1)

Φ e ( z ) \Phi_e(z) Φe(z) Φ ( z ) \Phi(z) Φ(z)代入 D ( z ) D(z) D(z)表达式 D ( z ) = 1 − ϕ e ( z ) G ( z ) ϕ e ( z ) = ϕ ( z ) G ( z ) ϕ e ( z ) D(z) = \frac{1-\phi_e(z)}{G(z)\phi_e(z)}= \frac{\phi(z)}{G(z)\phi_e(z)} D(z)=G(z)ϕe(z)1ϕe(z)=G(z)ϕe(z)ϕ(z)中,可得
D ( z ) = ϕ ( z ) G ( z ) ϕ e ( z ) = 0.484 z − 1 ( 1 + 1.065 z − 1 ) ( 1 − z − 1 ) ( 1 + 0.516 z − 1 ) = 0.636 ( 1 − 0.0185 z − 1 ) ( 1 − 0.0135 z − 1 ) ( 1 + 0.05 z − 1 ) ( 1 + 0.516 z − 1 ) \begin{aligned} D(z) &= \frac{\phi(z)}{G(z)\phi_e(z)} \\ &= \frac{0.484 z^{-1}(1+1.065z^{-1})}{(1-z^{-1})(1+0.516z^{-1})} \\ &= \frac{0.636 (1-0.0185z^{-1}) (1 - 0.0135z^{-1})}{(1+0.05z^{-1})(1+0.516z^{-1})} \end{aligned} D(z)=G(z)ϕe(z)ϕ(z)=(1z1)(1+0.516z1)0.484z1(1+1.065z1)=(1+0.05z1)(1+0.516z1)0.636(10.0185z1)(10.0135z1)

验证输出: 系统经 D ( z ) D(z) D(z)数字校正后,在单位阶跃输入作用下,系统输出响应为
Y ( z ) = Φ ( z ) R ( z ) = 0.484 z − 1 ( 1 + 1.065 z − 1 ) ⋅ 1 1 − z − 1 = 0.484 z − 1 + z − 2 + z − 3 + . . . \begin{aligned} Y(z) &= \Phi(z) R(z) = 0.484z^{-1}(1+1.065z^{-1}) \cdot \frac{1}{1-z^{-1}} \\ &= 0.484z^{-1} + z^{-2} + z^{-3} + ... \end{aligned} Y(z)=Φ(z)R(z)=0.484z1(1+1.065z1)1z11=0.484z1+z2+z3+...

上式说明输出响应 y ( k ) y(k) y(k)经两拍后,完全跟踪输入,稳态误差为零.显然,由于有单位圆外的零点,响应时间比理想控制器增加了一拍.

验证误差:
E ( z ) = Φ e ( z ) R ( z ) = ( 1 − z − 1 ) ( 1 + 0.516 z − 1 ) ⋅ 1 1 − z − 1 = 1 + 0.516 z − 1 \begin{aligned} E(z) &= \Phi_e(z) R(z) = (1-z^{-1})(1+0.516z^{-1}) \cdot \frac{1}{1-z^{-1}} \\ &= 1+0.516z^{-1} \end{aligned} E(z)=Φe(z)R(z)=(1z1)(1+0.516z1)1z11=1+0.516z1

最少拍无纹波控制器的设计

要实现无纹波控制,除了上一节实际无纹波控制器的条件之外,对闭环脉冲传递函数 Φ ( z ) \Phi(z) Φ(z)的选取提出了更加苛刻的要求,要求 Φ ( z ) \Phi(z) Φ(z)的零点应包含 G ( z ) G(z) G(z)全部零点和滞后因子.

  1. 为了实现无静差调节,取 Φ e ( z ) = ( 1 − z − 1 ) N F ( z ) \Phi_e(z) = (1 - z^{-1})^N F(z) Φe(z)=(1z1)NF(z),引入 F ( z ) F(z) F(z)是为了补齐 z z z的次数,使 Φ ( z ) \Phi(z) Φ(z) Φ e ( z ) \Phi_e(z) Φe(z)为同阶多项式, F ( z ) F(z) F(z)应尽量简单.
  2. 为保证稳定性, Φ e ( z ) \Phi_e(z) Φe(z)的零点应包含 G ( z ) G(z) G(z)的所有不稳定极点.
  3. 为保证控制器 D ( z ) D(z) D(z)在物理上的可实现性, G ( z ) G(z) G(z)的**全部零点**和滞后因子均应包含在闭环脉冲传递函数 Φ ( z ) \Phi(z) Φ(z)中.
  4. 为实现最少拍控制, F ( z ) F(z) F(z)应尽量简单. F ( z ) F(z) F(z)的选择要满足恒等式 Φ e ( z ) + Φ ( z ) ≡ 1 \Phi_e(z)+\Phi(z) \equiv 1 Φe(z)+Φ(z)1.
  5. Φ e ( z ) \Phi_e(z) Φe(z) Φ ( z ) \Phi(z) Φ(z)代入 D ( z ) D(z) D(z)表达式 D ( z ) = 1 − ϕ e ( z ) G ( z ) ϕ e ( z ) = ϕ ( z ) G ( z ) ϕ e ( z ) D(z) = \frac{1-\phi_e(z)}{G(z)\phi_e(z)}= \frac{\phi(z)}{G(z)\phi_e(z)} D(z)=G(z)ϕe(z)1ϕe(z)=G(z)ϕe(z)ϕ(z)中,求出 D ( z ) D(z) D(z)

例题: 设被控对象的传递函数 G ( z ) = 3.68 z − 1 ( 1 + 0.718 z − 1 ) ( 1 − z − 1 ) ( 1 − 0.368 z − 1 ) G(z) = \frac{3.68z^{-1} (1+0.718z^{-1})}{(1-z^{-1})(1-0.368z^{-1})} G(z)=(1z1)(10.368z1)3.68z1(1+0.718z1),试求在单位阶跃输入下设计最少拍无纹波数字控制器 D ( z ) D(z) D(z).

解: G ( z ) G(z) G(z)的表达式在由一个零点 z = − 0.718 z=-0.718 z=0.718和一个滞后因子 z − 1 z^{-1} z1.

根据最少拍系统的限制条件,可假设
Φ e ( z ) = ( 1 − z − 1 ) ( 1 + a z − 1 ) Φ ( z ) = b z − 1 ( 1 + 0.718 z − 1 ) \begin{aligned} \Phi_e(z) &= (1-z^{-1})(1+az^{-1}) \\ \Phi(z) &= bz^{-1}(1+0.718z^{-1}) \end{aligned} Φe(z)Φ(z)=(1z1)(1+az1)=bz1(1+0.718z1)

Φ e ( z ) \Phi_e(z) Φe(z) Φ ( z ) \Phi(z) Φ(z)代入 Φ e ( z ) + Φ ( z ) ≡ 1 \Phi_e(z)+\Phi(z) \equiv 1 Φe(z)+Φ(z)1,可解得
a = 0.418 , b = 0.582 a=0.418, b=0.582 a=0.418,b=0.582

可知
Φ e ( z ) = ( 1 − z − 1 ) ( 1 + 0.0.41 8 − 1 ) Φ ( z ) = 0.582 z − 1 ( 1 + 0.71 8 − 1 ) \begin{aligned} \Phi_e(z) &= (1-z^{-1})(1+0.0.418^{-1}) \\ \Phi(z) &= 0.582 z^{-1}(1+0.718^{-1}) \end{aligned} Φe(z)Φ(z)=(1z1)(1+0.0.4181)=0.582z1(1+0.7181)

Φ e ( z ) \Phi_e(z) Φe(z) Φ ( z ) \Phi(z) Φ(z)代入 D ( z ) D(z) D(z)表达式 D ( z ) = 1 − ϕ e ( z ) G ( z ) ϕ e ( z ) = ϕ ( z ) G ( z ) ϕ e ( z ) D(z) = \frac{1-\phi_e(z)}{G(z)\phi_e(z)}= \frac{\phi(z)}{G(z)\phi_e(z)} D(z)=G(z)ϕe(z)1ϕe(z)=G(z)ϕe(z)ϕ(z)中,可得
D ( z ) = ϕ ( z ) G ( z ) ϕ e ( z ) = 0.158 ( 1 − 0.368 z − 1 ) 1 + 0.418 z − 1 \begin{aligned} D(z) &= \frac{\phi(z)}{G(z)\phi_e(z)} \\ &= \frac{0.158 (1-0.368z^{-1})}{1+0.418z^{-1}} \end{aligned} D(z)=G(z)ϕe(z)ϕ(z)=1+0.418z10.158(10.368z1)

验证输出: 系统经 D ( z ) D(z) D(z)数字校正后,在单位阶跃输入作用下,系统输出响应为
Y ( z ) = Φ ( z ) R ( z ) = 0.582 z − 1 ( 1 + 0.718 z − 1 ) ⋅ 1 1 − z − 1 = 0.582 z − 1 + z − 2 + z − 3 + . . . \begin{aligned} Y(z) &= \Phi(z) R(z) = 0.582z^{-1}(1+0.718z^{-1}) \cdot \frac{1}{1-z^{-1}} \\ &= 0.582z^{-1} + z^{-2} + z^{-3} + ... \end{aligned} Y(z)=Φ(z)R(z)=0.582z1(1+0.718z1)1z11=0.582z1+z2+z3+...

验证误差:
E ( z ) = Φ e ( z ) R ( z ) = ( 1 − z − 1 ) ( 1 + 0.418 z − 1 ) ⋅ 1 1 − z − 1 = 1 + 0.418 z − 1 \begin{aligned} E(z) &= \Phi_e(z) R(z) = (1-z^{-1})(1+0.418z^{-1}) \cdot \frac{1}{1-z^{-1}} \\ &= 1+0.418z^{-1} \end{aligned} E(z)=Φe(z)R(z)=(1z1)(1+0.418z1)1z11=1+0.418z1

验证无纹波:
U ( z ) = D ( z ) E ( z ) = D ( z ) Φ e ( z ) R ( z ) = 0.158 − 0.0581 z − 1 \begin{aligned} U(z) &= D(z) E(z) = D(z) \Phi_e(z) R(z) \\ &= 0.158-0.0581z^{-1} \end{aligned} U(z)=D(z)E(z)=D(z)Φe(z)R(z)=0.1580.0581z1

可见,控制信号在第二拍后, u ( 2 ) = u ( 3 ) = . . . = 0 u(2)=u(3)=...=0 u(2)=u(3)=...=0,进入稳态,故保证了系统无输出纹波.

§8.3.纯滞后控制

大林控制算法

  • 大林算法的基本形式

    对于一个纯滞后对象 G ( s ) = K e − τ s T 1 s + 1 G(s)=\frac{K e^{-\tau s}}{T_1s+1} G(s)=T1s+1Keτs,其中 T 1 T_1 T1为被控对象的时间常数, τ \tau τ为纯滞后实践,且 τ \tau τ为采样周期 T T T的整数倍,即 τ = N T \tau=NT τ=NT.计算数字控制器 D ( z ) D(z) D(z)的步骤如下:

    1. 理想的闭环传递函数 Φ ( s ) = e − τ s T 0 s + 1 \Phi(s)=\frac{e^{-\tau s}}{T_0 s+ 1} Φ(s)=T0s+1eτs,将其离散化:

      Φ ( z ) = ( 1 − z − 1 ) Z [ e − N T s s ( T 0 s + 1 ) ] = z − N ⋅ ( 1 − z − 1 ) ⋅ ( 1 − e − T / T 0 ) z − 1 ( 1 − z − 1 ) ( 1 − e − T / T 0 z − 1 ) = z − ( N + 1 ) ⋅ ( 1 − e − T / T 0 ) ( 1 − e − T / T 0 z − 1 ) \begin{aligned} \Phi(z) &= (1-z^{-1})\mathbb{Z}[\frac{e^{-NTs}}{s(T_0s+1)}] \\ &= z^{-N} \cdot (1-z^{-1}) \cdot \frac{(1-e^{-T/T_0})z^{-1}}{(1-z^{-1})(1-e^{-T/T_0}z^{-1})} \\ &= \frac{z^{-(N+1)} \cdot (1-e^{-T/T_0})}{(1-e^{-T/T_0}z^{-1})} \end{aligned} Φ(z)=(1z1)Z[s(T0s+1)eNTs]=zN(1z1)(1z1)(1eT/T0z1)(1eT/T0)z1=(1eT/T0z1)z(N+1)(1eT/T0)

    2. 类似地,将 G ( s ) G(s) G(s)离散化,得到
      G ( z ) = K z − ( N + 1 ) ⋅ ( 1 − e − T / T 1 ) ( 1 − e − T / T 1 z − 1 ) G(z) = K \frac{z^{-(N+1)} \cdot (1-e^{-T/T_1})}{(1-e^{-T/T_1}z^{-1})} G(z)=K(1eT/T1z1)z(N+1)(1eT/T1)

    3. 根据公式 D ( z ) = ϕ ( z ) G ( z ) ( 1 − ϕ ( z ) ) D(z) = \frac{\phi(z)}{G(z) (1 - \phi(z))} D(z)=G(z)(1ϕ(z))ϕ(z),求 D ( z ) D(z) D(z):
      D ( z ) = ϕ ( z ) G ( z ) ( 1 − ϕ ( z ) ) = z − ( N + 1 ) ⋅ ( 1 − e − T / T 0 ) ( 1 − e − T / T 0 z − 1 ) K z − ( N + 1 ) ⋅ ( 1 − e − T / T 1 ) ( 1 − e − T / T 1 z − 1 ) [ 1 − z − ( N + 1 ) ⋅ ( 1 − e − T / T 0 ) ( 1 − e − T / T 0 z − 1 ) ] = ( 1 − e − T / T 0 ) ( 1 − e − T / T 1 z − 1 ) K ( 1 − e − T / T 1 ) [ 1 − e − T / T 0 z − 1 − ( 1 − e − T / T 0 ) z − ( N + 1 ) ) ] \begin{aligned} D(z) &= \frac{\phi(z)}{G(z) (1 - \phi(z))} \\ &= \frac {\frac{z^{-(N+1)} \cdot (1-e^{-T/T_0})}{(1-e^{-T/T_0}z^{-1})}} { K \frac{z^{-(N+1)} \cdot (1-e^{-T/T_1})}{(1-e^{-T/T_1}z^{-1})} [1 - \frac{z^{-(N+1)} \cdot (1-e^{-T/T_0})}{(1-e^{-T/T_0}z^{-1})}] } \\ &= \frac {(1-e^{-T/T_0}) (1-e^{-T/T_1} z^{-1})} {K (1-e^{-T/T_1}) [1 -e^{-T/T_0} z^{-1} - (1 -e^{-T/T_0}) z^{-(N+1)})]} \end{aligned} D(z)=G(z)(1ϕ(z))ϕ(z)=K(1eT/T1z1)z(N+1)(1eT/T1)[1(1eT/T0z1)z(N+1)(1eT/T0)](1eT/T0z1)z(N+1)(1eT/T0)=K(1eT/T1)[1eT/T0z1(1eT/T0)z(N+1))](1eT/T0)(1eT/T1z1)

  • 振铃现象及其引起原因和消除方法?

    • 采用大林算法构成闭环控制系统时计算机的输出 U ( z ) U(z) U(z)常会以 1 2 \frac{1}{2} 21采样频率大蝠上下振荡.这一震荡将使执行机构的磨损增加,而且影响控制质置,甚至可能破坏系统的稳定,必须加以消除。通常这一振荡现象被称为振铃现象。
    • 振铃的根源是控制器 z = − 1 z=-1 z=1附近的极点所致,且 z = − 1 z=-1 z=1处振铃最严重.
    • 一个切实可行的方法是先找到控制器中可能产生振铃的极点,然后令该极点的 z = 1 z=1 z=1.这样,既取消了这个极点,又不影响系统的稳态输出.
  • 计算消除振铃后数字控制器的形式:

    将上式中 D ( z ) D(z) D(z)因式分解,得到:
    D ( z ) = ( 1 − e − T / T 0 ) ( 1 − e − T / T 1 z − 1 ) K ( 1 − e − T / T 1 ) ( 1 − z − 1 ) [ 1 + ( 1 − e − T / T 0 ) ( z − 1 + z − 2 + z − 3 + . . . + z − N ) ] \begin{aligned} D(z) &= \frac {(1-e^{-T/T_0}) (1-e^{-T/T_1} z^{-1})} {K (1-e^{-T/T_1}) (1-z^{-1}) [1 + (1 -e^{-T/T_0}) (z^{-1}+z^{-2}+z^{-3}+ ... +z^{-N})]} \end{aligned} D(z)=K(1eT/T1)(1z1)[1+(1eT/T0)(z1+z2+z3+...+zN)](1eT/T0)(1eT/T1z1)

    显然存在极点 z = 1 z=1 z=1,不会引起振铃,可能引起振铃的因子是 [ 1 + ( 1 − e − T / T 0 ) ( z − 1 + z − 2 + z − 3 + . . . + z − N ) ] [1 + (1 -e^{-T/T_0}) (z^{-1}+z^{-2}+z^{-3}+ ... +z^{-N})] [1+(1eT/T0)(z1+z2+z3+...+zN)]项.下面对 N N N的取值进行分类讨论:

    • N = 0 N=0 N=0时,此因子不存在,无振铃可能.

    • N = 1 N=1 N=1时,有一个极点 z = − ( 1 − e − T / T 0 ) z=-(1 -e^{-T/T_0}) z=(1eT/T0).在 T 0 ≪ T T_0\ll T T0T时,极点 z → − 1 z \rarr -1 z1,存在严重的振铃现象,为消除振铃,可令 z = 1 z=1 z=1.因子变为 1 + ( 1 − e − T / T 0 ) z − 1 = 2 − e − T / T 0 1 + (1 -e^{-T/T_0})z^{-1} = 2 -e^{-T/T_0} 1+(1eT/T0)z1=2eT/T0,此时
      D ( z ) = ( 1 − e − T / T 0 ) ( 1 − e − T / T 1 z − 1 ) K ( 1 − e − T / T 1 ) ( 1 − z − 1 ) ( 2 − e − T / T 0 ) \begin{aligned} D(z) &= \frac {(1-e^{-T/T_0}) (1-e^{-T/T_1} z^{-1})} {K (1-e^{-T/T_1}) (1-z^{-1}) (2 -e^{-T/T_0})} \end{aligned} D(z)=K(1eT/T1)(1z1)(2eT/T0)(1eT/T0)(1eT/T1z1)

    • N = 2 N=2 N=2时,令 z = 1 z=1 z=1,因子变为 1 + ( 1 − e − T / T 0 ) ( z − 1 + z − 2 ) = 3 − 2 e − T / T 0 1 + (1 -e^{-T/T_0}) (z^{-1}+z^{-2})= 3-2e^{-T/T_0} 1+(1eT/T0)(z1+z2)=32eT/T0,此时
      D ( z ) = ( 1 − e − T / T 0 ) ( 1 − e − T / T 1 z − 1 ) K ( 1 − e − T / T 1 ) ( 1 − z − 1 ) ( 3 − 2 e − T / T 0 ) \begin{aligned} D(z) &= \frac {(1-e^{-T/T_0}) (1-e^{-T/T_1} z^{-1})} {K (1-e^{-T/T_1}) (1-z^{-1}) (3 -2e^{-T/T_0})} \end{aligned} D(z)=K(1eT/T1)(1z1)(32eT/T0)(1eT/T0)(1eT/T1z1)

pdf版本笔记的下载地址: 控制装置与仪表随堂练习答案及知识点总结02(访问密码:3834)

  • 17
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
《DL2010热工仪表控制装置检修运行规程》是针对热工仪表控制装置的检修和运行制定的规程。它主要包括了仪表设备的日常维护、定期检修、故障排除、安全操作和运行管理等方面的内容。 首先,该规程规定了热工仪表控制装置的日常维护工作,包括对仪表设备的清洁、润滑、调整和保养等内容,以保证设备的正常运行和使用寿命。 其次,该规程还对热工仪表控制装置的定期检修进行了详细的规定,包括检修的时间安排、内容要求、程序步骤和注意事项等,以确保仪表设备的性能和精度处于良好状态。 同时,该规程对仪表设备故障排除提供了一系列的操作指南和应急处理措施,帮助操作人员及时发现和解决设备故障,减少因故障造成的生产损失。 此外,该规程还详细规定了热工仪表控制装置的安全操作要求,强调了设备操作人员的安全意识和操作规范,以防止意外事故的发生。 最后,该规程还对热工仪表控制装置的运行管理提出了相应的要求,包括运行记录的填写和保存、设备运行状态的监测和评估、运行效率的提高和节能减排等内容,以确保设备运行稳定、安全、高效。 总之,DL2010热工仪表控制装置检修运行规程对热工仪表控制装置的管理提出了明确的要求和规定,有利于保障设备的正常运行,提高设备的可靠性和安全性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值